-
The 850-nm vertical-cavity surface-emitting laser (VCSEL) with liquid crystal overlay is presented utilizing the birefringence of nematic liquid crystal. Threshold current, peak of optical power and I-P characteristics at different temperatures were studied. At 293 K, the current between the first polarization hop and the second one has an increase of 2.2 mA after overlaying the liquid crystal. At 313 K and 3 mA, the optical power difference between the two orthogonally polarized lights increases from 133.6 to 248.8 μW. The experimental results show that the nematic liquid crystal enlarges the stable range and the discrete of optical power of orthogonally polarized state. Our research could provide insight into the design and fabrication of VCSEL with stable polarization at high temperatures.
-
Keywords:
- VCSEL /
- nematic liquid crystal /
- polarization
[1] Kaiser J, Degen C, Elsässer W 2002 J. Opt. Soc. Am. B 19 672
[2] Law J Y, Agrawal G P 1997 IEEE Photon. Technol. Lett. 9 437
[3] Tayahi M B, Lanka S, Wang J, Catsten J, Hofmann L, Sukanta S 2006 Proc. of SPIE 6132 61320B
[4] Vogel P, Ebert V 2001 Appl. Phys. B 72 127
[5] Ostermann J M, Rinaldi F, Debernardi P, Michalzik, R 2005 IEEE Photon. Technol. Lett. 17 2256
[6] Yan Z, Lin C H, Coldren L A 2011 IEEE Photon. Technol. Lett. 23 305
[7] Li S, Guan B L, Shi G Z, Guo X 2012 Acta Phys. Sin. 61 18 (in Chinese) [李硕, 关宝璐, 史国柱, 郭霞 2012 61 184208]
[8] Boutami S, Benbakir B, Leclercq J L, Viktorovitch P 2007 Appl. Phys. Lett. 91 071105
[9] Ostermann J M, Debernardi P, Jalics C, Kroner A, Riedl M C, Michalzik R 2005 Opt. Commun. 246 511
[10] Castany O, Dupont L, Shuaib A, Gauthier J P, Levallois C, Paranthoën 2011 Appl. Phys. Lett. 98 161105
[11] Krassimir P, Hugo T 2011 Opt. Express 19 16749
[12] Yi X, Jeroen B, Wouter W, Krassimir P, Kristiaan N 2012 IEEE Photon. Technol. Lett. 24 1509
[13] Li J, Wu S, Brugioni S, Meucci R, Faetti S 2005 J. Appl. Phys. 97 073501
[14] Martin-Regalado J, Prati F, Miguel S M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[15] Sirenko A A, Etchegoin P, Fainstein A, Eberl K, Cardona M 1999 Phys. Rev. B 60 8253
[16] Chen C, Paul O L, Andrew A A, Kent M G, Kent D C 2006 IEEE J. Quantum Electron. 42 1078
[17] Balle S, Tolkachova E, Miguel M S, Tredicce J, Martin-Regalado J, Gahl A 1999 Opt. Lett. 24 1121
[18] Shi G Z, Guan B L, Li S, Wang Q, Shen G D 2013 Chin. Phys. B 22 014206
-
[1] Kaiser J, Degen C, Elsässer W 2002 J. Opt. Soc. Am. B 19 672
[2] Law J Y, Agrawal G P 1997 IEEE Photon. Technol. Lett. 9 437
[3] Tayahi M B, Lanka S, Wang J, Catsten J, Hofmann L, Sukanta S 2006 Proc. of SPIE 6132 61320B
[4] Vogel P, Ebert V 2001 Appl. Phys. B 72 127
[5] Ostermann J M, Rinaldi F, Debernardi P, Michalzik, R 2005 IEEE Photon. Technol. Lett. 17 2256
[6] Yan Z, Lin C H, Coldren L A 2011 IEEE Photon. Technol. Lett. 23 305
[7] Li S, Guan B L, Shi G Z, Guo X 2012 Acta Phys. Sin. 61 18 (in Chinese) [李硕, 关宝璐, 史国柱, 郭霞 2012 61 184208]
[8] Boutami S, Benbakir B, Leclercq J L, Viktorovitch P 2007 Appl. Phys. Lett. 91 071105
[9] Ostermann J M, Debernardi P, Jalics C, Kroner A, Riedl M C, Michalzik R 2005 Opt. Commun. 246 511
[10] Castany O, Dupont L, Shuaib A, Gauthier J P, Levallois C, Paranthoën 2011 Appl. Phys. Lett. 98 161105
[11] Krassimir P, Hugo T 2011 Opt. Express 19 16749
[12] Yi X, Jeroen B, Wouter W, Krassimir P, Kristiaan N 2012 IEEE Photon. Technol. Lett. 24 1509
[13] Li J, Wu S, Brugioni S, Meucci R, Faetti S 2005 J. Appl. Phys. 97 073501
[14] Martin-Regalado J, Prati F, Miguel S M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[15] Sirenko A A, Etchegoin P, Fainstein A, Eberl K, Cardona M 1999 Phys. Rev. B 60 8253
[16] Chen C, Paul O L, Andrew A A, Kent M G, Kent D C 2006 IEEE J. Quantum Electron. 42 1078
[17] Balle S, Tolkachova E, Miguel M S, Tredicce J, Martin-Regalado J, Gahl A 1999 Opt. Lett. 24 1121
[18] Shi G Z, Guan B L, Li S, Wang Q, Shen G D 2013 Chin. Phys. B 22 014206
Catalog
Metrics
- Abstract views: 6005
- PDF Downloads: 499
- Cited By: 0