Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimized design and epitaxy growth of high speed 850 nm vertical-cavity surface-emitting lasers

Zhou Guang-Zheng Yao Shun Yu Hong-Yan Lü Zhao-Chen Wang Qing Zhou Tian-Bao Li Ying Lan Tian Xia Yu Lang Lu-Guang Cheng Li-Wen Dong Guo-Liang Kang Lian-Hong Wang Zhi-Yong

Citation:

Optimized design and epitaxy growth of high speed 850 nm vertical-cavity surface-emitting lasers

Zhou Guang-Zheng, Yao Shun, Yu Hong-Yan, Lü Zhao-Chen, Wang Qing, Zhou Tian-Bao, Li Ying, Lan Tian, Xia Yu, Lang Lu-Guang, Cheng Li-Wen, Dong Guo-Liang, Kang Lian-Hong, Wang Zhi-Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using transfer matrix method and TFcalc thin film design software,the reflectance spectrum of distributed Bragg reflector (DBR) and vertical cavity surface emitting laser (VCSEL) are simulated.The reflectance spectra from the cavity and surface are compared with each other,thus providing the basis for white light source (WLS) optical reflectance spectrum of the VCSEL epitaxial wafer.When using WLS to characterize VCSEL wafer,it is necessary to combine the simulation results and the shape of optical reflectance spectrum to speculate the reflectance seen from the cavity.The influences of different cap layers on the reflectance of DBRs are discussed theoretically and experimentally.With a 1/4 GaAs cap layer,the reflectance reaches up to 97.8% seen from the cavity.This design can make the wavelength of the VCSEL etalon picked easily because of avoiding the influence of test noise. The active region has higher heat accumulation due to the small area and poor thermal conductivity.The characteristics of the gain spectrum of InGaAs/AlGaAs strained quantum well (QW) under different temperatures and the temperature distribution in VCSEL are simulated by Crosslight software.The gain-to-cavity wavelength detuning is used to improve the slope efficiency and the temperature stability.The temperature in active region ranges from 360 K to 370 K.The gain peak wavelength and the Fabry-Perot cavity wavelength are designed in the ranges of 829-832 nm and 845-847 nm,respectively.Epitaxial wafer with top-emitting VCSEL structure grown by metal-organic chemical vapor deposition is characterized.The room temperature photoluminescence peak is at 827.5 nm and the etalon cavity wavelength measured by optical reflectance is 847.7 nm,which are consistent with designed values. The oxide restricted VCSELs with 7.5 m oxide aperture are fabricated.The image of the infrared light source CCD shows that the oxide aperture is circular.A passivation layer of 120 nm SiO2 is finally deposited to insulate water vapor.The threshold current is 0.8 mA,and the maximum output power reaches up to 9 mW at 13.5 mA.The optical spectrum at 6.0 mA reveals multiple transverse modes.The center wavelength is 852.3 nm and the root mean square (RMS) spectrum width is 0.6 nm,meeting the high-speed Datacom standards.Shannon theory indicates that the maximum data rate is not only proportional to bandwidth but also related to signal-to-noise ratio (SNR).It is effective to reduce relative intensity noise and enhance the SNR by increasing output power.From the eye diagram of 25 Gbit/s on-off key VCSEL,it is demonstrated that fall time is 38.66 ps,rise time is 41.54 ps,SNR is 5.6,and jitter RMS is 1.57 ps.Clear eye opening is observed from eye diagram of 25 GBaud/s PAM-4 VCSEL,which indicates the qualified 50 Gbit/s high speed performance.
      Corresponding author: Yao Shun, yaoshun_bjut@126.com
    [1]

    Saha A K, Islam S 2009 Opt. Quant. Electron 41 873

    [2]

    Moser P 2015 Ph. D. Dissertation (Berlin:Technische Universitt Berlin)

    [3]

    Li T, Ning Y Q, Hao E J, Cui J J, Zhang Y, Liu G Y, Qin L, Liu Y, Wang L J, Cui D F, Xu Z Y 2009 Sci. China Ser F:Inform. Sci. 52 1226

    [4]

    Wang Y H, Bo B X 2013 Chin. J. Lumin. 34 184

    [5]

    Blokhin S A, Bobrov M A, Maleev N A, Kuzmenkov A G, Sakharov A V, Blokhin A A, Moser P, Lott J A, Bimberg D, Usinov V M 2014 Appl. Phys. Lett. 105 061104

    [6]

    Moser P, Lott J A, Bimberg D 2013 IEEE J. Sel. Top. Quantum Electron. 19 1702212

    [7]

    Westbergh P, Gustavsson J S, Kgel B, Haglund , Larsson A 2011 IEEE J. Sel. Top. Quantum Electron. 17 1603

    [8]

    Feng Y, Hao Y Q, Wang X T, Liu G J, Yan C L, Zhang J B, Li Z J, Li Y 2017 Chin. Laser J. 44 47 (in Chinese)[冯源, 郝永芹, 王宪涛, 刘国军, 晏长岭, 张家斌, 李再金, 李洋 2017 中国激光 44 47]

    [9]

    Kuchta D M, Rylyakov A V, Doany F E, Schow C L, Proesel J E, Baks C W, Westbergh P, Gustavsson J S, Larsson A 2015 IEEE Photon. Technol. Lett. 27 577

    [10]

    Coldren L A, Corzine S W, Maanovi M L 2012 Diode Lasers and Photonic Integrated Circuits, Second Edition (New Jersey:John Wiley Sons, Inc.) pp288-298

    [11]

    Blakemore J S 1982 J. Appl. Phys. 53 123

    [12]

    Casey H C, Sell D D, Wecht K W 1975 J. Appl. Phys. 46 250

    [13]

    Zhang Y M, Zhong J C, Zhao Y J, Hao Y Q, Li L, Wang Y X, Su W 2005 Chin. J. Semicond. 5 1024 (in Chinese)[张永明, 钟景昌, 赵英杰, 郝永芹, 李林, 王玉霞, 苏伟 2005 半导体学报 5 1024]

    [14]

    Zhang X, Zhang Y, Zhang J W, Zhong C Y, Huang Y W, Ning Y Q, Gu S H, Wang L J 2016 Acta Phys. Sin. 65 134204 (in Chinese)[张星, 张奕, 张建伟, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军 2016 65 134204]

    [15]

    Cui M, Han J, Deng J, Li J J, Xing Y H, Chen X, Zhu Q F 2015 Semicond. Optoelectron. 36 38 (in Chinese)[崔明, 韩军, 邓军, 李建军, 邢艳辉, 陈翔, 朱启发 2015 半导体光电 36 38]

    [16]

    Li L, Zhong J C, Zhang Y M, Zhao Y J, Wang Y, Liu W L, Hao Y Q, Su W, Yan C L 2005 Atca Photon. Sin. 3 343 (in Chinese)[李林, 钟景昌, 张永明, 赵英杰, 王勇, 刘文莉, 郝永琴, 苏伟, 晏长岭 2005 光子学报 3 343]

    [17]

    Zhang J W, Ning Y Q, Zhang X, Zeng Y G, Zhang J, Liu Y, Qin L, Wang L J 2013 Chin. Laser J. 40 6 (in Chinese)[张建伟, 宁永强, 张星, 曾玉刚, 张建, 刘云, 秦莉, 王立军 2013 中国激光 40 6]

    [18]

    Chen M, Guo X, Guan B L, Deng J, Dong L M, Shen G D 2006 Acta Phys. Sin. 55 5842 (in Chinese)[陈敏, 郭霞, 关宝璐, 邓军, 董立闽, 沈光地 2006 55 5842]

    [19]

    Szczerba K, Lengyel T, Karlsson M, Andrekson P A, Larsson A 2016 IEEE Photon. Technol. Lett. 28 2519

    [20]

    Wang J Y, Murty M V R, Wang C, Hui D, Harren A L, Chang H H, Feng Z W, Fanning T R, Sridhara A, Taslim S, Cai X L, Chu J, Giovane L 2017 Proc. SPIE 10122 1012202

    [21]

    Li H, Wolf P, Jia X W, Lott J A, Bimberg D 2017 Appl. Phys. Lett. 111 243508

    [22]

    Larisch G, Moser P, Lott J A, Bimberg D 2017 IEEE J. Quantum Electron. 53 2400908

    [23]

    Dalir H, Koyama F 2013 Appl. Phys. Lett. 103 091109

    [24]

    Kao H Y, Chi Y C, Peng C Y, Leong S F, Chang C K, Wu Y C, Shih T T, Huang J J, Kuo H C, Cheng W H, Wu C H, Lin G R 2017 IEEE J. Quantum Electron. 53 8000408

  • [1]

    Saha A K, Islam S 2009 Opt. Quant. Electron 41 873

    [2]

    Moser P 2015 Ph. D. Dissertation (Berlin:Technische Universitt Berlin)

    [3]

    Li T, Ning Y Q, Hao E J, Cui J J, Zhang Y, Liu G Y, Qin L, Liu Y, Wang L J, Cui D F, Xu Z Y 2009 Sci. China Ser F:Inform. Sci. 52 1226

    [4]

    Wang Y H, Bo B X 2013 Chin. J. Lumin. 34 184

    [5]

    Blokhin S A, Bobrov M A, Maleev N A, Kuzmenkov A G, Sakharov A V, Blokhin A A, Moser P, Lott J A, Bimberg D, Usinov V M 2014 Appl. Phys. Lett. 105 061104

    [6]

    Moser P, Lott J A, Bimberg D 2013 IEEE J. Sel. Top. Quantum Electron. 19 1702212

    [7]

    Westbergh P, Gustavsson J S, Kgel B, Haglund , Larsson A 2011 IEEE J. Sel. Top. Quantum Electron. 17 1603

    [8]

    Feng Y, Hao Y Q, Wang X T, Liu G J, Yan C L, Zhang J B, Li Z J, Li Y 2017 Chin. Laser J. 44 47 (in Chinese)[冯源, 郝永芹, 王宪涛, 刘国军, 晏长岭, 张家斌, 李再金, 李洋 2017 中国激光 44 47]

    [9]

    Kuchta D M, Rylyakov A V, Doany F E, Schow C L, Proesel J E, Baks C W, Westbergh P, Gustavsson J S, Larsson A 2015 IEEE Photon. Technol. Lett. 27 577

    [10]

    Coldren L A, Corzine S W, Maanovi M L 2012 Diode Lasers and Photonic Integrated Circuits, Second Edition (New Jersey:John Wiley Sons, Inc.) pp288-298

    [11]

    Blakemore J S 1982 J. Appl. Phys. 53 123

    [12]

    Casey H C, Sell D D, Wecht K W 1975 J. Appl. Phys. 46 250

    [13]

    Zhang Y M, Zhong J C, Zhao Y J, Hao Y Q, Li L, Wang Y X, Su W 2005 Chin. J. Semicond. 5 1024 (in Chinese)[张永明, 钟景昌, 赵英杰, 郝永芹, 李林, 王玉霞, 苏伟 2005 半导体学报 5 1024]

    [14]

    Zhang X, Zhang Y, Zhang J W, Zhong C Y, Huang Y W, Ning Y Q, Gu S H, Wang L J 2016 Acta Phys. Sin. 65 134204 (in Chinese)[张星, 张奕, 张建伟, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军 2016 65 134204]

    [15]

    Cui M, Han J, Deng J, Li J J, Xing Y H, Chen X, Zhu Q F 2015 Semicond. Optoelectron. 36 38 (in Chinese)[崔明, 韩军, 邓军, 李建军, 邢艳辉, 陈翔, 朱启发 2015 半导体光电 36 38]

    [16]

    Li L, Zhong J C, Zhang Y M, Zhao Y J, Wang Y, Liu W L, Hao Y Q, Su W, Yan C L 2005 Atca Photon. Sin. 3 343 (in Chinese)[李林, 钟景昌, 张永明, 赵英杰, 王勇, 刘文莉, 郝永琴, 苏伟, 晏长岭 2005 光子学报 3 343]

    [17]

    Zhang J W, Ning Y Q, Zhang X, Zeng Y G, Zhang J, Liu Y, Qin L, Wang L J 2013 Chin. Laser J. 40 6 (in Chinese)[张建伟, 宁永强, 张星, 曾玉刚, 张建, 刘云, 秦莉, 王立军 2013 中国激光 40 6]

    [18]

    Chen M, Guo X, Guan B L, Deng J, Dong L M, Shen G D 2006 Acta Phys. Sin. 55 5842 (in Chinese)[陈敏, 郭霞, 关宝璐, 邓军, 董立闽, 沈光地 2006 55 5842]

    [19]

    Szczerba K, Lengyel T, Karlsson M, Andrekson P A, Larsson A 2016 IEEE Photon. Technol. Lett. 28 2519

    [20]

    Wang J Y, Murty M V R, Wang C, Hui D, Harren A L, Chang H H, Feng Z W, Fanning T R, Sridhara A, Taslim S, Cai X L, Chu J, Giovane L 2017 Proc. SPIE 10122 1012202

    [21]

    Li H, Wolf P, Jia X W, Lott J A, Bimberg D 2017 Appl. Phys. Lett. 111 243508

    [22]

    Larisch G, Moser P, Lott J A, Bimberg D 2017 IEEE J. Quantum Electron. 53 2400908

    [23]

    Dalir H, Koyama F 2013 Appl. Phys. Lett. 103 091109

    [24]

    Kao H Y, Chi Y C, Peng C Y, Leong S F, Chang C K, Wu Y C, Shih T T, Huang J J, Kuo H C, Cheng W H, Wu C H, Lin G R 2017 IEEE J. Quantum Electron. 53 8000408

  • [1] Yan Guan-Xin, Hao Yong-Qin, Zhang Qiu-Bo. Thermal characteristics of high-power vertical cavity surface emitting laser array. Acta Physica Sinica, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] Yu Hong-Yan, Yao Shun, Zhang Hong-Mei, Wang Qing, Zhang Yang, Zhou Guang-Zheng, Lü Zhao-Chen, Cheng Li-Wen, Lang Lu-Guang, Xia Yu, Zhou Tian-Bao, Kang Lian-Hong, Wang Zhi-Yong, Dong Guo-Liang. Design and fabrication of 940 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2019, 68(6): 064207. doi: 10.7498/aps.68.20181822
    [3] Li Jian-Jun. Design of active region for GaAsP/AlGaAs tensile strain quantum well laser diodes near 800 nm wavelength. Acta Physica Sinica, 2018, 67(6): 067801. doi: 10.7498/aps.67.20171816
    [4] Liu Fa, Xu Chen, Zhao Zhen-Bo, Zhou Kang, Xie Yi-Yang, Mao Ming-Ming, Wei Si-Min, Cao Tian, Sheng Guang-Di. Study on influence of oxide aperture shape on modal characteristics of VCSELs. Acta Physica Sinica, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [5] Wei Lai-Ming, Zhou Yuan-Ming, Yu Guo-Lin, Gao Kuang-Hong, Liu Xin-Zhi, Lin Tie, Guo Shao-Ling, Dai Ning, Chu Jun-Hao, Austing David Guy. Effective g-factor in high-mobility InGaAs/InP Quantum well. Acta Physica Sinica, 2012, 61(12): 127102. doi: 10.7498/aps.61.127102
    [6] Li Li, Liu Hong-Xia, Yang Zhao-Nian. Threshold-voltage and hole-sheet-density model of quantum well Si/SiGe/Si p field effect transistor. Acta Physica Sinica, 2012, 61(16): 166101. doi: 10.7498/aps.61.166101
    [7] Hao Yong-Qin, Feng Yuan, Wang Fei, Yan Chang-Ling, Zhao Ying-Jie, Wang Xiao-Hua, Wang Yu-Xia, Jiang Hui-Lin, Gao Xin, Bo Bao-Xue. 808nm vertical-cavity surface-emitting laser with large aperture. Acta Physica Sinica, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [8] Wang Hua, Xu Bing-She, Meng Wei-Xin, Hao Yu-Ying, Liu Xu-Guang, Xu Hui-Xia. Properties of white organic electroluminescent devices based on a new organic metal complex with quantum well structure. Acta Physica Sinica, 2011, 60(9): 098102. doi: 10.7498/aps.60.098102
    [9] Zheng Ying-Ying, Deng Hai-Tao, Wan Jing, Li Chao-Rong. Bandgap energy tuning and photoelectrical properties of self-assembly quantum well structure in organic-inorganic hybrid perovskites. Acta Physica Sinica, 2011, 60(6): 067306. doi: 10.7498/aps.60.067306
    [10] Guan Bao-Lu, Zhang Jing-Lan, Ren Xiu-Juan, Guo Shuai, Li Shuo, Chuai Dong-Xu, Guo Xia, Shen Guang-Di. Micro-nano-optical machine system tunable wavelength vertical cavity surface emitting lasers with wide tunable range. Acta Physica Sinica, 2011, 60(3): 034206. doi: 10.7498/aps.60.034206
    [11] Wang Bao-Qiang, Xu Chen, Liu Ying-Ming, Xie Yi-Yang, Liu Fa, Zhao Zhen-Bo, Zhou Kang, Shen Guang-Di. Study on current spreading of photonic crystal vertical cavity surface emitting lasers. Acta Physica Sinica, 2010, 59(12): 8542-8547. doi: 10.7498/aps.59.8542
    [12] Li Jian-Jun, Yang Zhen, Han Jun, Deng Jun, Zou De-Shu, Kang Yu-Zhu, Ding Liang, Shen Guang-Di. High performance resonant cavity light emitting diodes for POF application. Acta Physica Sinica, 2009, 58(9): 6304-6307. doi: 10.7498/aps.58.6304
    [13] Wang Tong-Xi, Guan Bao-Lu, Guo Xia, Shen Guang-Di. Study on the effects of carrier transport and parasitic parameters on the modulation response of tunnel regenerated vertical-cavity surface-emitting lasers with double active regions. Acta Physica Sinica, 2009, 58(3): 1694-1699. doi: 10.7498/aps.58.1694
    [14] Yang Hao, Guo Xia, Guan Bao-Lu, Wang Tong-Xi, Shen Guang-Di. The influence of injection current on transverse mode characteristics of vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [15] Wang Ke, Zheng Wan-Hua, Ren Gang, Du Xiao-Yu, Xing Ming-Xin, Chen Liang-Hui. Design and optimization of photonic crystal coupling layer for bi-color quantum well infrared photodetectors. Acta Physica Sinica, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [16] Peng Hong-Ling, Han Qin, Yang Xiao-Hong, Niu Zhi-Chuan. Modulation response analysis of 1.3 μm quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [17] Tong Cun-Zhu, Niu Zhi-Chuan, Han Qin, Wu Rong-Han. Design and analysis of 1.3μm GaAs-based quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
    [18] Zhao Hong Dong, Kang ZhiLong, Wang Sheng Li, Chen Guo Ying, Zhang YiMo. Microcavity effects in the high modulation response of thevertical cavity surface emitting laser. Acta Physica Sinica, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
    [19] . Acta Physica Sinica, 2002, 51(2): 367-371. doi: 10.7498/aps.51.367
    [20] WEI JIAN-HUA, XIE SHI-JIE, MEI LIANG-MO. SUPERLATTICE AND MULTI-QUANTUM-WELL PROPERTIES OF MX COMPOUNDS. Acta Physica Sinica, 2000, 49(11): 2254-2260. doi: 10.7498/aps.49.2254
Metrics
  • Abstract views:  7989
  • PDF Downloads:  373
  • Cited By: 0
Publishing process
  • Received Date:  29 November 2017
  • Accepted Date:  12 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回
Baidu
map