Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generations of multi-channel high-quality chaotic signals based on a ring system composed of polarization rotated coupled 1550 nm vertical-cavity surface-emitting lasers

Yang Feng Tang Xi Zhong Zhu-Qiang Xia Guang-Qiong Wu Zheng-Mao

Citation:

Generations of multi-channel high-quality chaotic signals based on a ring system composed of polarization rotated coupled 1550 nm vertical-cavity surface-emitting lasers

Yang Feng, Tang Xi, Zhong Zhu-Qiang, Xia Guang-Qiong, Wu Zheng-Mao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Optical chaos based on semiconductor laser (SL) has attracted much attention due to its potential application in various fields such as secure optical communication, chaotic radar, fast physical random bit generation, etc. By introducing external perturbations such as optical feedback, optical injection or optoelectronic feedback, SL can be driven into chaotic dynamic state. In general, an obvious time-delay signature (TDS) can be observed in a chaotic SL system with optical feedback, which is undesirable in some applications. So far, several schemes have been reported on the suppression of the TDS in chaotic SL systems, which are mostly based on external cavity feedback systems or mutually coupled systems. In this work, a novel scheme for suppressing TDS to generate multi-channel high-quality chaotic signals is proposed and numerically simulated based on a ring system composed of three unidirectionally polarization-rotated coupled 1550 nm vertical-cavity surface-emitting lasers (1550 nm-VCSELs). In this scheme, the output from the first 1550 nm-VCSEL passes through an optical circulator (OC), a Faraday rotator (FR) and a variable attenuator (VA), and then is injected into the second 1550 nm-VCSEL. The output from the second (third) 1550 nm-VCSEL passes through a similar path mentioned above, and then is injected into the third (first) 1550 nm-VCSEL. The polarization direction and the strength of injection light are controlled by the FR and VA, respectively. Adopting the spin flip model (SFM), the polarization-resolved dynamical characteristics of the three VCSELs in the ring system are analyzed. By the aid of self-correlation function (SF) and mutual information (MI), the influences of the coupled strength and frequency detuning on the TDS of polarization-resolved chaotic signal output from the three VCSELs are discussed. The results show that through selecting suitable coupling strength and frequency detuning, both the X-polarization component (X-PC) and Y-polarization component (Y-PC) in the three VCSELs can simultaneously be lased with comparative output powers, and the TDSs of these polarization components can also be effectively suppressed. Furthermore, we investigate the cross-correlation among the six-channel chaotic signals output from these VCSELs, and determine the region of coupled parameters for generating six-channel chaotic signals, within which satisfied is the weak cross-correlation between two signals from different VCSELs. Theoretically, the six-channel chaotic outputs can be used as physical entropy sources to generate six-channel random number sequences. By further merging the above two channel random bit sequences with weak cross-correlation, more channel random bit sequences with higher rate can be obtained. We hope this work can provide an effective guidance for multi-channel high-rate random bit generation.
      Corresponding author: Wu Zheng-Mao, zmwu@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275116, 61475127, 61575163), the Fundamental Research Funds for the Central Universities, China (Grant No. XDJK2016D060) and the Postgraduate Research and Innovation Project of Chongqing Municipality, China (Grant No. CYB14054).
    [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Wu J G, Wu Z M, Fan L, Tang X, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587

    [3]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [4]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nature Photon. 2 728

    [5]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nature Photon. 4 58

    [6]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [7]

    Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970

    [8]

    Avila M J F, Leite J R R 2007 Opt. Lett. 32 2960

    [9]

    Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236

    [10]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [11]

    Yan S L 2012 Acta Phys. Sin. 61 160505 (in Chinese) [颜森林2012 61 160505]

    [12]

    Lin F Y, Liu J M 2007 Appl. Opt. 46 7262

    [13]

    Li S S, Chan S C 2012 Opt. Express 20 1741

    [14]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [15]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [16]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2011 Chin. Phys. Lett. 28 014203

    [17]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [18]

    Li Y, Wu Z M, Zhong Z Q, Yang X J, Mao S, Xia G Q 2014 Opt. Express 22 19610

    [19]

    Hong Y H 2013 Opt. Express 21 17894

    [20]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [21]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [22]

    Sciamanna M, Gatare I, Locquet A, Panajotov 2007 Phys. Rev. E 75 056213

    [23]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700108

    [24]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [25]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [26]

    Torre M S, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

    [27]

    Deng T, Wu Z M, Xia G Q 2015 IEEE Photon. Technol. Lett. 27 2075

    [28]

    Quirce A, Valle A, Thienpont H, Panajotov K 2016 J. Opt. Soc. Am. B 33 90

  • [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Wu J G, Wu Z M, Fan L, Tang X, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587

    [3]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [4]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nature Photon. 2 728

    [5]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nature Photon. 4 58

    [6]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [7]

    Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970

    [8]

    Avila M J F, Leite J R R 2007 Opt. Lett. 32 2960

    [9]

    Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236

    [10]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [11]

    Yan S L 2012 Acta Phys. Sin. 61 160505 (in Chinese) [颜森林2012 61 160505]

    [12]

    Lin F Y, Liu J M 2007 Appl. Opt. 46 7262

    [13]

    Li S S, Chan S C 2012 Opt. Express 20 1741

    [14]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [15]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [16]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2011 Chin. Phys. Lett. 28 014203

    [17]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [18]

    Li Y, Wu Z M, Zhong Z Q, Yang X J, Mao S, Xia G Q 2014 Opt. Express 22 19610

    [19]

    Hong Y H 2013 Opt. Express 21 17894

    [20]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [21]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [22]

    Sciamanna M, Gatare I, Locquet A, Panajotov 2007 Phys. Rev. E 75 056213

    [23]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700108

    [24]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [25]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [26]

    Torre M S, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

    [27]

    Deng T, Wu Z M, Xia G Q 2015 IEEE Photon. Technol. Lett. 27 2075

    [28]

    Quirce A, Valle A, Thienpont H, Panajotov K 2016 J. Opt. Soc. Am. B 33 90

  • [1] Yan Guan-Xin, Hao Yong-Qin, Zhang Qiu-Bo. Thermal characteristics of high-power vertical cavity surface emitting laser array. Acta Physica Sinica, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] Mu Peng-Hua, Chen Hao, Liu Guo-Peng, Hu Guo-Si. Chaotic time delay feature cancellation and bandwidth enhancement in cascaded-coupled nanolasers. Acta Physica Sinica, 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [3] Pan Zhi-Peng, Li Wei, Lü Jia-Gang, Nie Yu-Wei, Zhong Li, Liu Su-Ping, Ma Xiao-Yu. Design and fabrication of 940 nm vertical cavity surface emitting laser single-emitter device. Acta Physica Sinica, 2023, 72(11): 114203. doi: 10.7498/aps.72.20230297
    [4] Yu Hong-Yan, Yao Shun, Zhang Hong-Mei, Wang Qing, Zhang Yang, Zhou Guang-Zheng, Lü Zhao-Chen, Cheng Li-Wen, Lang Lu-Guang, Xia Yu, Zhou Tian-Bao, Kang Lian-Hong, Wang Zhi-Yong, Dong Guo-Liang. Design and fabrication of 940 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2019, 68(6): 064207. doi: 10.7498/aps.68.20181822
    [5] Zhang Hao, Guo Xing-Xing, Xiang Shui-Ying. Key distribution based on unidirectional injection of vertical cavity surface emitting laser system. Acta Physica Sinica, 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
    [6] Zhou Guang-Zheng, Yao Shun, Yu Hong-Yan, Lü Zhao-Chen, Wang Qing, Zhou Tian-Bao, Li Ying, Lan Tian, Xia Yu, Lang Lu-Guang, Cheng Li-Wen, Dong Guo-Liang, Kang Lian-Hong, Wang Zhi-Yong. Optimized design and epitaxy growth of high speed 850 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [7] Su Bin-Bin, Chen Jian-Jun, Wu Zheng-Mao, Xia Guang-Qiong. Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection. Acta Physica Sinica, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [8] Guan Bao-Lu, Liu Xin, Jiang Xiao-Wei, Liu Chu, Xu Chen. Multi-transverse-mode and wavelength split characteristics of vertical cavity surface emitting laser. Acta Physica Sinica, 2015, 64(16): 164203. doi: 10.7498/aps.64.164203
    [9] Liu Qing-Xi, Pan Wei, Zhang Li-Yue, Li Nian-Qiang, Yan Juan. Chaotic randomness of mutually coupled vertical-cavity surface-emitting laser by optical injection. Acta Physica Sinica, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [10] Yang Xian-Jie, Chen Jian-Jun, Xia Guang-Qiong, Wu Jia-Gui, Wu Zheng-Mao. Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system. Acta Physica Sinica, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [11] Deng Wei, Xia Guang-Qiong, Wu Zheng-Mao. Dual-channel chaos synchronization and communication based on a vertical-cavity surface emitting laser with double optical feedback. Acta Physica Sinica, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [12] Mao Ming-Ming, Xu Chen, Wei Si-Min, Xie Yi-Yang, Liu Jiu-Cheng, Xu Kun. The effects of proton implant energy on threshold and output power of vertical cavity surface emitting laser. Acta Physica Sinica, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [13] Liu Fa, Xu Chen, Zhao Zhen-Bo, Zhou Kang, Xie Yi-Yang, Mao Ming-Ming, Wei Si-Min, Cao Tian, Sheng Guang-Di. Study on influence of oxide aperture shape on modal characteristics of VCSELs. Acta Physica Sinica, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [14] Li Shuo, Guan Bao-Lu, Shi Guo-Zhu, Guo Xia. Polarization stable vertical-cavity surface-emitting laser with surface sub-wavelength gratings. Acta Physica Sinica, 2012, 61(18): 184208. doi: 10.7498/aps.61.184208
    [15] Hao Yong-Qin, Feng Yuan, Wang Fei, Yan Chang-Ling, Zhao Ying-Jie, Wang Xiao-Hua, Wang Yu-Xia, Jiang Hui-Lin, Gao Xin, Bo Bao-Xue. 808nm vertical-cavity surface-emitting laser with large aperture. Acta Physica Sinica, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [16] Yang Hao, Guo Xia, Guan Bao-Lu, Wang Tong-Xi, Shen Guang-Di. The influence of injection current on transverse mode characteristics of vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [17] Yan Sen-Lin. Control of chaos in an external cavity delay feedback semiconductor laser via modulating the polarizing light. Acta Physica Sinica, 2008, 57(11): 6878-6882. doi: 10.7498/aps.57.6878
    [18] Peng Hong-Ling, Han Qin, Yang Xiao-Hong, Niu Zhi-Chuan. Modulation response analysis of 1.3 μm quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [19] Zhao Hong-Dong, Song Dian-You, Zhang Zhi-Feng, Sun Ji ng, Sun Mei, Wu Yi, Wen Xing-Rao. Influence of the potential in n-type DBR on threshold in vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2004, 53(11): 3744-3747. doi: 10.7498/aps.53.3744
    [20] Zhao Hong Dong, Kang ZhiLong, Wang Sheng Li, Chen Guo Ying, Zhang YiMo. Microcavity effects in the high modulation response of thevertical cavity surface emitting laser. Acta Physica Sinica, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
Metrics
  • Abstract views:  5488
  • PDF Downloads:  223
  • Cited By: 0
Publishing process
  • Received Date:  05 April 2016
  • Accepted Date:  11 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回
Baidu
map