-
基于垂直腔面发射激光器(VCSEL)的自旋反转模型, 数值研究了由一个光反馈VCSEL (定义为主VCSEL, M-VCSEL)输出的混沌光单向注入到另一个VCSEL (定义为副VCSLE, S-VCSEL)所构成的主副VCSELs系统的混沌动力学特性, 分析了注入强度、M-VCSEL与S-VCSEL之间的频率失谐以及M-VCSEL所受到的光反馈强度对系统混沌输出时延特征(包括强度时延特征(I-TDS) 和相位时延特征(P-TDS))以及输出带宽(BW)的影响. 结果显示: 通过调节注入强度和频率失谐, 该系统混沌输出的两个偏振分量(X-PC和Y-PC)的P-TDS和I-TDS可以同时得到抑制; 进一步分析注入强度和频率失谐对混沌BW的影响, 发现在较大负频率失谐区域, 系统可输出BW超过30 GHz 的X-PC和Y-PC混沌信号; 结合系统混沌输出信号的TDS与BW在注入强度和频率失谐参量空间下的演化特性, 可确定宽带宽、低时延特征混沌信号输出的参量空间区域. 此外, 通过合理调节M-VCSEL 所受到的光反馈强度, 可以显著优化系统的混沌输出信号质量.The time-delay signature (TDS) and the bandwidth (BW) are two important performance indexes to assess the chaos signal from a delayed laser system. Based on the spin flip model of vertical-cavity surface-emitting laser (VCSEL), we numerically investigate the characteristics of chaos dynamics in a master-slave VCSEL system, where a chaotic signal generated by a master VCSEL (M-VCSEL) under external optical feedback is unidirectionally injected into a slave VCSEL (S-VCSEL). The influences of injection strength, frequency detuning between M-VCSEL and S-VCSEL, and feedback strength of M-VCSEL on chaos TDS (including intensity TDS (I-TDS) and phase TDS (P-TDS)) and BW are investigated. The results show that by adjusting the injection strength and the frequency detuning, both I-TDS and P-TDS of two polarization components (referred to as X-PC and Y-PC respectively) of the chaotic output from the system can be suppressed simultaneously. Through further analyzing the influences of the injection strength and frequency detuning on the BW of chaotic signal, we find that the BWs of both X-PC and Y-PC of chaotic outputs can simultaneously exceed 30 GHz within a large negative frequency detuning range. Furthermore, by combining the evolution characteristics of the TDS and BW of chaotic outputs in the parameter space of injection strength and frequency detuning, the parameter region for generating the chaotic signals with wide BW and low TDS can be determined. In addition, by reasonably adjusting feedback strength, the quality of chaotic signal from the system can be further optimized.
-
Keywords:
- vertical-cavity surface-emitting lasers /
- chaos /
- time-delay signature /
- bandwidth
[1] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[2] Yan S L 2014 Chin. Phys. B 23 090503
[3] Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991
[4] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki S, Yoshimori M, Yoshimura K, Davis P 2008 Nat. Photon. 2 728
[5] Reidler I, Aviad Y, Rosenbluh M, Kantar I 2009 Phys. Rev. Lett. 103 024102
[6] Ohtsubo J 2013 Semiconductor Lasers: Stability, Instability and -Chaos (3rd Ed.) (Berlin: Springer) p26
[7] Vicente R, Dauden J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541
[8] Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018
[9] Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661
[10] Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879
[11] Zhao Q C, Wang Y C, Wang A B 2009 Appl. Opt. 48 3515
[12] Udaltsov V S, Goedgebuer J P, Larger L, Cuenot J B, Levy P, Rhodes W T 2003 Phys. Lett. A 308 54
[13] Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 59 7679]
[14] Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144
[15] Nguimdo R M, Soriano M C, Colet P 2011 Opt. Lett. 36 4332
[16] Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960
[17] Nguimdo R M, Verschaffelt G, Danckaert J, Sande G V 2012 Opt. Lett. 37 2541
[18] Xiang S Y, Pan W, Zhang L Y, Wen A J, Shang L, Zhang H X, Lin L 2014 Opt. Commun. 324 38
[19] Priyadarshi S, Hong Y H, Pierce I, Shore K A 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700707
[20] Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829
[21] Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236
[22] Simpson T B, Liu J M, Gavrielides A 1995 IEEE Photon. Technol. Lett. 7 709
[23] Simpson T B, Liu J M 1997 IEEE Photon. Technol. Lett. 9 1322
[24] Takiguchi Y, Ohyagi K, Ohtsubo J 2003 Opt. Lett. 28 319
[25] Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 56 4372]
[26] Wang Y C, Zhang G W, Wang A B 2007 Opt. Commun. 277 156
[27] Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633
[28] Someya H, Oowada I, Okumura H, Kida T, Uchida A 2009 Opt. Express 17 19536
[29] Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P 2010 Opt. Express 18 5512
[30] Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462
[31] Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[32] Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201
[33] Kingni S T, Talla Mb J H, Woafo P 2012 Eur. Phys. J. Plus 127 46
[34] Vicente R, Mirasso C R 2004 Proc. SPIE 5349 331
[35] Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[36] Chen Y L, Wu Z M, Tang X, Lin X D, Wei Y, Xia G Q 2013 Acta Phys. Sin. 62 104207 (in Chinese) [陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼 2013 62 104207]
[37] Yang X J, Wu J G, Wu Z M, Li Y, Wang L, Xia G Q 2015 Opt. Commun. 336 262
[38] Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010
[39] Tkach R W, Chraplyvy A R 1986 J. Lightwave Technol. 4 1655
-
[1] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[2] Yan S L 2014 Chin. Phys. B 23 090503
[3] Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991
[4] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki S, Yoshimori M, Yoshimura K, Davis P 2008 Nat. Photon. 2 728
[5] Reidler I, Aviad Y, Rosenbluh M, Kantar I 2009 Phys. Rev. Lett. 103 024102
[6] Ohtsubo J 2013 Semiconductor Lasers: Stability, Instability and -Chaos (3rd Ed.) (Berlin: Springer) p26
[7] Vicente R, Dauden J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541
[8] Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018
[9] Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661
[10] Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879
[11] Zhao Q C, Wang Y C, Wang A B 2009 Appl. Opt. 48 3515
[12] Udaltsov V S, Goedgebuer J P, Larger L, Cuenot J B, Levy P, Rhodes W T 2003 Phys. Lett. A 308 54
[13] Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 59 7679]
[14] Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144
[15] Nguimdo R M, Soriano M C, Colet P 2011 Opt. Lett. 36 4332
[16] Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960
[17] Nguimdo R M, Verschaffelt G, Danckaert J, Sande G V 2012 Opt. Lett. 37 2541
[18] Xiang S Y, Pan W, Zhang L Y, Wen A J, Shang L, Zhang H X, Lin L 2014 Opt. Commun. 324 38
[19] Priyadarshi S, Hong Y H, Pierce I, Shore K A 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700707
[20] Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829
[21] Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236
[22] Simpson T B, Liu J M, Gavrielides A 1995 IEEE Photon. Technol. Lett. 7 709
[23] Simpson T B, Liu J M 1997 IEEE Photon. Technol. Lett. 9 1322
[24] Takiguchi Y, Ohyagi K, Ohtsubo J 2003 Opt. Lett. 28 319
[25] Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 56 4372]
[26] Wang Y C, Zhang G W, Wang A B 2007 Opt. Commun. 277 156
[27] Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633
[28] Someya H, Oowada I, Okumura H, Kida T, Uchida A 2009 Opt. Express 17 19536
[29] Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P 2010 Opt. Express 18 5512
[30] Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462
[31] Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[32] Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201
[33] Kingni S T, Talla Mb J H, Woafo P 2012 Eur. Phys. J. Plus 127 46
[34] Vicente R, Mirasso C R 2004 Proc. SPIE 5349 331
[35] Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[36] Chen Y L, Wu Z M, Tang X, Lin X D, Wei Y, Xia G Q 2013 Acta Phys. Sin. 62 104207 (in Chinese) [陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼 2013 62 104207]
[37] Yang X J, Wu J G, Wu Z M, Li Y, Wang L, Xia G Q 2015 Opt. Commun. 336 262
[38] Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010
[39] Tkach R W, Chraplyvy A R 1986 J. Lightwave Technol. 4 1655
计量
- 文章访问数: 6066
- PDF下载量: 276
- 被引次数: 0