搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究

王小发 李骏

引用本文:
Citation:

短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究

王小发, 李骏

Dynamic characteristics of 1550 nm vertical-cavity surface-emitting laser subject to polarization-rotated optical feedback:the short cavity regime

Wang Xiao-Fa, Li Jun
PDF
导出引用
  • 基于扩展的自旋反转模型,对短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性进行了数值仿真和理论分析. 研究结果表明:增加反馈强度会导致多个偏振开关现象出现,中等反馈强度下呈现丰富的动力学状态,譬如单周期、倍周期、准周期及混沌态,增加注入电流使Y方向线偏振模的工作区域被压缩;随着反馈延迟时间的增加,在弱光反馈时,偏振模跳变现象将会以特定的频率发生,施加中等的反馈强度将会导致模式跳变的频率增加,并且出现各种新的动力学状态,包括拍频单周期、拍频脉冲包络、拍频准周期和拍频混沌态. 新动力学行为的出现是由于短外腔区激光器的动力学特性对相位变化非常敏感,从而使外腔模式间的拍频效应发挥了关键作用. 此外还发现各种动力学状态之间会伴随模式间的跳变而发生相互跳变.
    Based on the extended spin-flip model (SFM), we investigate theoretically the dynamic characteristics of 1550nm vertical-cavity surface-emitting laser subject to polarization-rotated optical feedback: the short cavity regime. Results show that increasing the feedback strength will result in multiple polarization switching (PS) phenomena, and there will appear rich dynamics under the condition of medium feedback intensity, such as single period, period-doubling, quasi-periodic and chaotic states. At the same time, the increase of injection current will result in the reduction of working area of Y direction polarization mode. As the feedback delay time increases, under the condition of weak optical feedback polarization mode, the hopping phenomenon will take place at a particular frequency; the frequency of mode hopping will increase with the increase of moderate feedback strength, and the laser shows a variety of new dynamic characteristics, such as single period, pulse envelope, quasi-periodic and chaotic states, by taking a beat frequency signal. These dynamic characteristics are very sensitive to the phase change so the beat frequency effect between external cavity modes plays a key role. In addition, the hopping phenomenon between various dynamic states can also be found along with the mode hopping.
    • 基金项目: 国家自然科学基金(批准号:11304409)、重庆市自然科学基金(批准号:CSTC2013icyjA40004)和重庆邮电大学自然科学基金(批准号:A2012-24)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11304409), the Natural Science Foundation of Chongqing City, China (Grant No. CSTC2013icyjA40004), and the Natural Science Foundation of Chongqing University of Posts and Telecommunications, China (Grant No. A2012-24).
    [1]

    Mork J, Mark J, Tromborg B 1990 Phys. Rev. Lett. 65 1999

    [2]

    Dente G C, Durkin P S, Wilson K A, Moeller C E 1988 IEEE J. Quantum Electron. 24 2441

    [3]

    Lenstra D, Bverbeek B H, Den Boff A J 1985 IEEE J. Quantum Electron. 21 674

    [4]

    Wang C L, Wu J, Lin J T 2002 Chin. Phys. 11 1033

    [5]

    Wang C L, Wu J, Lin J T 2003 Chin. Phys. 12 1120

    [6]

    Liu S F, Xia G Q, Wu J G, Li L F, Wu Z M 2008 Acta Phys. Sin. 57 1502 (in Chinese) [刘胜芳, 夏光琼, 吴加贵, 李林福, 吴正茂 2008 57 1502]

    [7]

    Zhang X J, Wang B J, Yang L J, Wang A B, Guo D M, Wang Y C 2009 Acta Phys. Sin. 58 3203 (in Chinese) [张秀娟, 王冰洁, 杨玲珍, 王安帮, 郭东明, 王云才 2009 58 3203]

    [8]

    Tang S, Liu J M 2003 IEEE J. Quantum Electron. 39 708

    [9]

    David W S, Karen L B, Allison R S, Katherine J B, Jake V B, Athanasios G 2004 Opt. Lett. 29 2393

    [10]

    Joanne Y L, Govind P A 1998 J. Opt. Soc. Am. B 15 562

    [11]

    Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发, 夏光琼, 吴正茂 2009 58 4669]

    [12]

    Yan S L 2010 Opt. Commun. 283 3305

    [13]

    Wang A B, Wang Y C, He F C 2008 IEEE Phon. Tech. Lett. 20 1633

    [14]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237

    [15]

    Zhang M J, Liu T G, Li P, Wang A B, Zhang J Z, Wang Y C 2011 IEEE Phon. Tech. Lett. 23 1872

    [16]

    Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P 2010 Opt. Express 18 5512

    [17]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [18]

    Wu J G, Wu Z M, Tang X, Fan L, Deng W, Xia G Q 2013 IEEE Phon. Tech. Lett. 25 587

    [19]

    Heil T, Fischer I, Elsäßer W, Krauskopf B, Green K, Gavrielides A 2003 Phys. Rev. E 67 066214

    [20]

    Heil T, Fischer I, Elsäßer W, Gavrielides A 2001 Phys. Rev. Lett. 87 243901

    [21]

    Peil M, Fischer I, Elsäßer W 2004 C. R. Physique 5 633]

    [22]

    Ahlers V, Parlitz U, Lauterborn W 1998 Phys. Rev. E 58 7208

    [23]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [24]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [25]

    Sondermann M, Ackemann T, Balle S, Mulet J, Panajotov K 2004 Opt. Commun. 235 421

    [26]

    Koyama F 2006 J. Light. Technol. 24 4502

    [27]

    Virte M, Panajotov K, Thienpont H, Sciamanna M 2013 Nature. Photon. 7 60

    [28]

    Muller M, Hofmann W, Grundl T, Horn M, Wolf P, Nagel R D, Ronneberg E, Bohm G, Bimberg D, Amann M C 2011 IEEE J. Sel. Top. Quantum Electron. 17 1158

    [29]

    Quirce A, Cuesta J R, Valle A, Hurtado A, Pesquera P, Adams M J 2012 IEEE J. Sel. Top. Quantum Electron 18 772

    [30]

    Sciamanna M, Panajotov K, Thienpont H, Veretennicoff I, Mégret P, Blondel M 2003 Opt. Lett. 28 1543

    [31]

    Deng T, Wu Z M, Xie Y Y, Wu J G, Tang X, Fan L, Panajotov K, Xia G Q 2013 Appl. Opt. 52 3833

    [32]

    Zheng A J, Wu Z M, Deng T, Li X J, Xia G Q 2012 Acta Phys. Sin. 61 234203 (in Chinese) [郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼 2012 61 234203]

    [33]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12620

    [34]

    Cheng X H, Lin X D, Wu Z M, Fan L, Cao T, Xia G Q 2012 Acta Phys. Sin. 61 094209 (in Chinese) [陈兴华, 林晓东, 吴正茂, 樊利, 曹体, 夏光琼 2012 61 094209]

    [35]

    Quirce A, Pérez P, Valle A, Pesquera L 2011 J. Opt. Soc. Am. B 28 2765

    [36]

    Al-Seyab R, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

  • [1]

    Mork J, Mark J, Tromborg B 1990 Phys. Rev. Lett. 65 1999

    [2]

    Dente G C, Durkin P S, Wilson K A, Moeller C E 1988 IEEE J. Quantum Electron. 24 2441

    [3]

    Lenstra D, Bverbeek B H, Den Boff A J 1985 IEEE J. Quantum Electron. 21 674

    [4]

    Wang C L, Wu J, Lin J T 2002 Chin. Phys. 11 1033

    [5]

    Wang C L, Wu J, Lin J T 2003 Chin. Phys. 12 1120

    [6]

    Liu S F, Xia G Q, Wu J G, Li L F, Wu Z M 2008 Acta Phys. Sin. 57 1502 (in Chinese) [刘胜芳, 夏光琼, 吴加贵, 李林福, 吴正茂 2008 57 1502]

    [7]

    Zhang X J, Wang B J, Yang L J, Wang A B, Guo D M, Wang Y C 2009 Acta Phys. Sin. 58 3203 (in Chinese) [张秀娟, 王冰洁, 杨玲珍, 王安帮, 郭东明, 王云才 2009 58 3203]

    [8]

    Tang S, Liu J M 2003 IEEE J. Quantum Electron. 39 708

    [9]

    David W S, Karen L B, Allison R S, Katherine J B, Jake V B, Athanasios G 2004 Opt. Lett. 29 2393

    [10]

    Joanne Y L, Govind P A 1998 J. Opt. Soc. Am. B 15 562

    [11]

    Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发, 夏光琼, 吴正茂 2009 58 4669]

    [12]

    Yan S L 2010 Opt. Commun. 283 3305

    [13]

    Wang A B, Wang Y C, He F C 2008 IEEE Phon. Tech. Lett. 20 1633

    [14]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237

    [15]

    Zhang M J, Liu T G, Li P, Wang A B, Zhang J Z, Wang Y C 2011 IEEE Phon. Tech. Lett. 23 1872

    [16]

    Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P 2010 Opt. Express 18 5512

    [17]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [18]

    Wu J G, Wu Z M, Tang X, Fan L, Deng W, Xia G Q 2013 IEEE Phon. Tech. Lett. 25 587

    [19]

    Heil T, Fischer I, Elsäßer W, Krauskopf B, Green K, Gavrielides A 2003 Phys. Rev. E 67 066214

    [20]

    Heil T, Fischer I, Elsäßer W, Gavrielides A 2001 Phys. Rev. Lett. 87 243901

    [21]

    Peil M, Fischer I, Elsäßer W 2004 C. R. Physique 5 633]

    [22]

    Ahlers V, Parlitz U, Lauterborn W 1998 Phys. Rev. E 58 7208

    [23]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [24]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [25]

    Sondermann M, Ackemann T, Balle S, Mulet J, Panajotov K 2004 Opt. Commun. 235 421

    [26]

    Koyama F 2006 J. Light. Technol. 24 4502

    [27]

    Virte M, Panajotov K, Thienpont H, Sciamanna M 2013 Nature. Photon. 7 60

    [28]

    Muller M, Hofmann W, Grundl T, Horn M, Wolf P, Nagel R D, Ronneberg E, Bohm G, Bimberg D, Amann M C 2011 IEEE J. Sel. Top. Quantum Electron. 17 1158

    [29]

    Quirce A, Cuesta J R, Valle A, Hurtado A, Pesquera P, Adams M J 2012 IEEE J. Sel. Top. Quantum Electron 18 772

    [30]

    Sciamanna M, Panajotov K, Thienpont H, Veretennicoff I, Mégret P, Blondel M 2003 Opt. Lett. 28 1543

    [31]

    Deng T, Wu Z M, Xie Y Y, Wu J G, Tang X, Fan L, Panajotov K, Xia G Q 2013 Appl. Opt. 52 3833

    [32]

    Zheng A J, Wu Z M, Deng T, Li X J, Xia G Q 2012 Acta Phys. Sin. 61 234203 (in Chinese) [郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼 2012 61 234203]

    [33]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12620

    [34]

    Cheng X H, Lin X D, Wu Z M, Fan L, Cao T, Xia G Q 2012 Acta Phys. Sin. 61 094209 (in Chinese) [陈兴华, 林晓东, 吴正茂, 樊利, 曹体, 夏光琼 2012 61 094209]

    [35]

    Quirce A, Pérez P, Valle A, Pesquera L 2011 J. Opt. Soc. Am. B 28 2765

    [36]

    Al-Seyab R, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

  • [1] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析.  , 2022, 71(3): 030501. doi: 10.7498/aps.71.20211549
    [2] 李春曦, 程冉, 叶学民. 接触角迟滞和气-液界面张力温度敏感性对液滴蒸发动态特性的影响.  , 2021, 70(20): 204701. doi: 10.7498/aps.70.20210294
    [3] 徐珂, 许龙, 周光平. 考虑水蒸气蒸发和冷凝的球状泡群中泡的动力学特性.  , 2021, 70(19): 194301. doi: 10.7498/aps.70.20210045
    [4] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析.  , 2021, (): . doi: 10.7498/aps.70.20211549
    [5] 宁利中, 张珂, 宁碧波, 刘爽, 田伟利. 倾斜Poiseuille-Rayleigh-Bénard流动的对流分区与动力学特性.  , 2020, 69(12): 124401. doi: 10.7498/aps.69.20191941
    [6] 马凌华, 夏光琼, 陈建军, 吴正茂. 1550 nm垂直腔面发射激光器的特征参量随温度的变化.  , 2018, 67(21): 214203. doi: 10.7498/aps.67.20180572
    [7] 包涵, 包伯成, 林毅, 王将, 武花干. 忆阻自激振荡系统的隐藏吸引子及其动力学特性.  , 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
    [8] 陈俊, 陈建军, 吴正茂, 蒋波, 夏光琼. 可变偏振光注入下1550nm垂直腔面发射激光器的偏振开关及双稳特性.  , 2016, 65(16): 164204. doi: 10.7498/aps.65.164204
    [9] 杨继云, 吴正茂, 梁卿, 陈建军, 钟祝强, 夏光琼. 1550nm垂直腔面发射激光器自旋反转模型中关键参量数值的实验确定.  , 2016, 65(12): 124203. doi: 10.7498/aps.65.124203
    [10] 张晓旭, 张胜海, 吴天安, 孙巍阳. 1550 nm-VCSELs在偏振保持光反馈和正交光注入下的偏振转换特性.  , 2016, 65(21): 214206. doi: 10.7498/aps.65.214206
    [11] 王小发, 吴正茂, 夏光琼. 光反馈诱发长波长垂直腔面发射激光器低功耗偏振开关.  , 2016, 65(2): 024204. doi: 10.7498/aps.65.024204
    [12] 蒋树庆, 甯家敏, 陈法新, 叶繁, 薛飞彪, 李林波, 杨建伦, 陈进川, 周林, 秦义, 李正宏, 徐荣昆, 许泽平. Z箍缩动态黑腔动力学及辐射特性初步实验研究.  , 2013, 62(15): 155203. doi: 10.7498/aps.62.155203
    [13] 陈兴华, 林晓东, 吴正茂, 樊利, 曹体, 夏光琼. 基于偏振旋转光反馈下的外光注入VCSEL产生高性能毫米波.  , 2012, 61(9): 094209. doi: 10.7498/aps.61.094209
    [14] 郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼. 偏振保持光反馈下1550 nm垂直腔面发射激光器的非线性动力学特性研究.  , 2012, 61(23): 234203. doi: 10.7498/aps.61.234203
    [15] 吴渝, 杨晶晶, 王利. Swarm模型突现行为的动力学特性分析.  , 2011, 60(10): 108902. doi: 10.7498/aps.60.108902
    [16] 和兴锁, 李雪华, 邓峰岩. 平面柔性梁的刚-柔耦合动力学特性分析与仿真.  , 2011, 60(2): 024502. doi: 10.7498/aps.60.024502
    [17] 蒋飞, 刘中, 胡文, 包伯成. 连续混沌调频信号的动力学设计与分析.  , 2010, 59(1): 116-122. doi: 10.7498/aps.59.116
    [18] 包伯成, 周国华, 许建平, 刘中. 斜坡补偿电流模式控制开关变换器的动力学建模与分析.  , 2010, 59(6): 3769-3777. doi: 10.7498/aps.59.3769
    [19] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析.  , 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [20] 蔡国梁, 谭振梅, 周维怀, 涂文桃. 一个新的混沌系统的动力学分析及混沌控制.  , 2007, 56(11): 6230-6237. doi: 10.7498/aps.56.6230
计量
  • 文章访问数:  6977
  • PDF下载量:  699
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-02
  • 修回日期:  2013-08-29
  • 刊出日期:  2014-01-05

/

返回文章
返回
Baidu
map