Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of surface pretreatment on GaN van der Waals epitaxy growth on graphene

Wang Bo Fang Yu-Long Yin Jia-Yun Liu Qing-Bin Zhang Zhi-Rong Guo Yan-Min Li Jia Lu Wei-Li Feng Zhi-Hong

Citation:

Effect of surface pretreatment on GaN van der Waals epitaxy growth on graphene

Wang Bo, Fang Yu-Long, Yin Jia-Yun, Liu Qing-Bin, Zhang Zhi-Rong, Guo Yan-Min, Li Jia, Lu Wei-Li, Feng Zhi-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Due to the weak van der Waals interaction between GaN epitaxial layer and graphene substrate, GaN grown on graphene has attracted considerable attention in recent years, benefited from the possibility to grow epitaxial material without any necessity to satisfy the requirement for the lattice matching between the epitaxial materials and underlying materials, and the unique facility of transferring GaN epitaxy to other substrates. However, clusters formed in GaN grown on graphene lead to poor crystalline quality, deteriorating the applications of GaN epilayer on graphene. It is observed that preferential nucleation occurs primarily at the sites of defects and along the step edges of graphene. In order to study the effects of NH3/H2 ratio on the graphene/sapphire template and properties of GaN epilayer, the growth of GaN by metal organic chemical vapor deposition on the graphene/sapphire template pretreated with the mixed gas of NH3 and H2 is investigated.Prior to the deposition of GaN, five samples with different NH3/H2 flow ratios (0, 0.2, 0.5, 1 and 2, respectively) are pretreated at 1030℃ while the H2 flow rate is fixed at 3.6 mol/min. The surface topographies and Raman spectra of the pretreated graphene are investigated, and the chemical reaction mechanism is studied. It is found that the graphene is etched at the wrinkle firstly and then along the direction of wrinkles where there is bigger contact interface with NH3 and H2, and graphene decomposition is enhanced with the increase of NH3/H2 flow ratio. The pretreatment mechanisms of different mixed gases are also discussed. Owing to the weak bond energy, NH3 is easier to decompose than H2. The reaction between graphene and H, NH2 which are produced by the decomposition of NH3, enhances the etching of graphene.Finally GaN film is deposited on graphene/sapphire template pretreated by different NH3/H2 flow ratios. The quality of GaN was improved on graphene pretreated by appropriate NH3/H2 flow ratio and verified through highresolution X-ray diffraction.The lowest (002) and (102) full widths at half maximum (FWHM) of GaN obtained on graphene/sapphire template are 587 arcsec and 707 arcsec respectively, while the root-mean-square (RMS) of GaN is 0.37 nm. The stress of GaN is characterized by Raman spectra at room temperature. The co-presence of characteristic peaks of sapphire, graphene and GaN suggests that GaN has deposited on graphene/sapphire template. The E2-high Raman peak is used to estimate the residual stress in GaN material as described elsewhere. The E2-high peak of GaN grown on graphene is around 566.7 cm-1, while the value of strain-free GaN is 566.2 cm-1. Thus, there is subtle compressive stress in the GaN grown on graphene, which can be calculated from the relationship:△ωγ=4.3·σχχ cm-1·GPa-1, giving a value of 0.11 GPa of GaN obtained on graphene/sapphire template.This study provides an effective pretreatment technique to improve the crystal quality of GaN epilayer deposited on graphene/sapphire template, which gives guidance in well crystallizing three-dimensional materials on two-dimensional materials.
      Corresponding author: Fang Yu-Long, yvloong@163.com
    [1]

    Huang R 2011 Nat. Nanotech. 6 537

    [2]

    Gupta P, Rahman A A, Hatui N, Parmar J B, Chalke B A, Bapat R D, Purandare S C, Deshmukh M M, Bhattacharya A 2013 Appl. Phys. Lett. 103 181108

    [3]

    Lee C H, Kim Y J, Hong Y J, Jeon S R, Bae S, Hong B H, Yi G C 2011 Adv. Mater. 23 4614

    [4]

    Loher T, Tomm Y, Pettenkofer C, Jaegermann W 1994 Appl. Phys. Lett. 65 555

    [5]

    Loher T, Tomm Y, Klein A, Su D 1996 J. Appl. Phys. 80 5718

    [6]

    Gupta P, Rahman A A, Hatui N, Gokhale M R, Deshmukh M M, Bhattacharya A 2013 J. Cryst. Growth 372 105

    [7]

    Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223

    [8]

    Chung K, Lee C H, Yi G C 2010 Science 330 655

    [9]

    Nepal N, Wheeler V D, Anderson T J, Kub F J, Mastro M A, Myers-Ward R L, Qadri S B, Freitas J A, Hernandez S C, Nyakiti L O, Walton S G, Gaskill K, Eddy C R 2013 Appl. Phys. Express 6 061003

    [10]

    Zhao Z D, Wang B, Xu W, Zhang H R, Chen Z Y, Yu G H 2015 Mater. Lett. 153 152

    [11]

    Kim J, Bayram C, Park H, Cheng C W, Dimitrakopoulos C, Ott J A, Reuter K B, Bedell S W, Sadana D K 2014 Nat. Commun. 5 4836

    [12]

    Balushi Z Y A, Miyagi T, Lin Y C, Wang K, Calderin L, Bhimanapati G, Redwing J M, Robinson J A 2015 Surf. Sci. 634 81

    [13]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [14]

    Tamor M A, Vassell W C 1994 J. Appl. Phys. 76 3823

    [15]

    Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva S R P 1996 J. Appl. Phys. 80 440

    [16]

    Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund P C 2006 Nano Lett. 6 2667

    [17]

    Graf D, Molitor F, Ensslin K 2007 Nano Lett. 7 238

    [18]

    Casiraghi C, Pisana S, Novoselov K S, Geim A K, Ferrari A C 2007 Appl. Phys. Lett. 91 233108

    [19]

    Park P S, Reddy K M, Nath D N, Yang Z C, Padture N P, Rajan S 2013 Appl. Phys. Lett. 102 153501

    [20]

    Choubak S, Biron M, Levesque P L, Martel R, Desjardins P 2013 J. Phys. Chem. Lett. 4 1100

    [21]

    Choubak S, Levesque P L, Gaufres E, Biron M, Desjardins P, Martel R 2014 J. Phys. Chem. C 118 21532

    [22]

    Robinson Z R, Jernigan G G, Currie M 2015 Carbon 81 73

    [23]

    Fang L P, Yuan W, Wang B, Xiong Y 2016 Appl. Surf. Sci. 383 28

    [24]

    Delagrange S, Schuurman Y 2007 Catal. Today 121 204

    [25]

    Talbi D 1999 Chem. Phys. Lett. 313 626

    [26]

    Lee D, Shin I S, Jin L, Kim D, Park Y, Yoon E 2016 J. Cryst. Growth 444 9

    [27]

    Zheng C C, Ning J Q, Wu Z P, Wang J F, Zhao D H, Xu K, Gao J, Xu S J 2014 RSC Adv. 4 55430

    [28]

    Kisielowski C, Krger J, Ruvimov S, Suski T, AgerⅢ J W, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D, Davis R F 1996 Phys. Rev. B 54 17745

    [29]

    Tripathy S, Lin V K X, Vicknesh S, Chua S J 2007 J. Appl. Phys. 101 063525

  • [1]

    Huang R 2011 Nat. Nanotech. 6 537

    [2]

    Gupta P, Rahman A A, Hatui N, Parmar J B, Chalke B A, Bapat R D, Purandare S C, Deshmukh M M, Bhattacharya A 2013 Appl. Phys. Lett. 103 181108

    [3]

    Lee C H, Kim Y J, Hong Y J, Jeon S R, Bae S, Hong B H, Yi G C 2011 Adv. Mater. 23 4614

    [4]

    Loher T, Tomm Y, Pettenkofer C, Jaegermann W 1994 Appl. Phys. Lett. 65 555

    [5]

    Loher T, Tomm Y, Klein A, Su D 1996 J. Appl. Phys. 80 5718

    [6]

    Gupta P, Rahman A A, Hatui N, Gokhale M R, Deshmukh M M, Bhattacharya A 2013 J. Cryst. Growth 372 105

    [7]

    Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223

    [8]

    Chung K, Lee C H, Yi G C 2010 Science 330 655

    [9]

    Nepal N, Wheeler V D, Anderson T J, Kub F J, Mastro M A, Myers-Ward R L, Qadri S B, Freitas J A, Hernandez S C, Nyakiti L O, Walton S G, Gaskill K, Eddy C R 2013 Appl. Phys. Express 6 061003

    [10]

    Zhao Z D, Wang B, Xu W, Zhang H R, Chen Z Y, Yu G H 2015 Mater. Lett. 153 152

    [11]

    Kim J, Bayram C, Park H, Cheng C W, Dimitrakopoulos C, Ott J A, Reuter K B, Bedell S W, Sadana D K 2014 Nat. Commun. 5 4836

    [12]

    Balushi Z Y A, Miyagi T, Lin Y C, Wang K, Calderin L, Bhimanapati G, Redwing J M, Robinson J A 2015 Surf. Sci. 634 81

    [13]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [14]

    Tamor M A, Vassell W C 1994 J. Appl. Phys. 76 3823

    [15]

    Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva S R P 1996 J. Appl. Phys. 80 440

    [16]

    Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund P C 2006 Nano Lett. 6 2667

    [17]

    Graf D, Molitor F, Ensslin K 2007 Nano Lett. 7 238

    [18]

    Casiraghi C, Pisana S, Novoselov K S, Geim A K, Ferrari A C 2007 Appl. Phys. Lett. 91 233108

    [19]

    Park P S, Reddy K M, Nath D N, Yang Z C, Padture N P, Rajan S 2013 Appl. Phys. Lett. 102 153501

    [20]

    Choubak S, Biron M, Levesque P L, Martel R, Desjardins P 2013 J. Phys. Chem. Lett. 4 1100

    [21]

    Choubak S, Levesque P L, Gaufres E, Biron M, Desjardins P, Martel R 2014 J. Phys. Chem. C 118 21532

    [22]

    Robinson Z R, Jernigan G G, Currie M 2015 Carbon 81 73

    [23]

    Fang L P, Yuan W, Wang B, Xiong Y 2016 Appl. Surf. Sci. 383 28

    [24]

    Delagrange S, Schuurman Y 2007 Catal. Today 121 204

    [25]

    Talbi D 1999 Chem. Phys. Lett. 313 626

    [26]

    Lee D, Shin I S, Jin L, Kim D, Park Y, Yoon E 2016 J. Cryst. Growth 444 9

    [27]

    Zheng C C, Ning J Q, Wu Z P, Wang J F, Zhao D H, Xu K, Gao J, Xu S J 2014 RSC Adv. 4 55430

    [28]

    Kisielowski C, Krger J, Ruvimov S, Suski T, AgerⅢ J W, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D, Davis R F 1996 Phys. Rev. B 54 17745

    [29]

    Tripathy S, Lin V K X, Vicknesh S, Chua S J 2007 J. Appl. Phys. 101 063525

  • [1] Ding Ye-Zhang, Ye Yin, Li Duo-Sheng, Xu Feng, Lang Wen-Chang, Liu Jun-Hong, Wen Xin. Molecular dynamics simulation of graphene deposition and growth on WC-Co cemented carbides. Acta Physica Sinica, 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [2] Yao Hai-Yun, Yan Xin, Liang Lan-Ju, Yang Mao-Sheng, Yang Qi-Li, Lü Kai-Kai, Yao Jian-Quan. Terahertz dynamic multidimensional modulation at Dirac point based on patterned graphene/gallium nitride hybridized with metasurfaces. Acta Physica Sinica, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [3] Wang Jian, Zhang Chao-Yue, Yao Zhao-Yu, Zhang Chi, Xu Feng, Yang Yuan. A method of rapidly designing graphene-based terahertz diffusion surface. Acta Physica Sinica, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [4] Guo Xiao-Meng, Qing Fang-Zhu, Li Xue-Song. Applications of graphene in anti-corrosion of metal surface. Acta Physica Sinica, 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [5] Yuan Ying-Kuo, Guo Wei-Ling, Du Zai-Fa, Qian Feng-Song, Liu Ming, Wang Le, Xu Chen, Yan Qun, Sun Jie. Applications of graphene transistor optimized fabrication process in monolithic integrated driving gallium nitride micro-light-emitting diode. Acta Physica Sinica, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [6] Zhang Yu-Xiang, Peng Yi-Tian, Lang Hao-Jie. Controllable nano-friction of graphene surface by fabricating nanoscale patterning based on atomic force microscopy. Acta Physica Sinica, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [7] Chen Ling-Xiu, Wang Hui-Shan, Jiang Cheng-Xin, Chen Chen, Wang Hao-Min. Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride. Acta Physica Sinica, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [8] Li Xiao-Bing, Lu Wei-Bing, Liu Zhen-Guo, Chen Hao. Dynamic beam-steering in wide angle range based on tunable graphene metasurface. Acta Physica Sinica, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [9] Zhang Zhong-Qiang, Jia Yu-Xia, Guo Xin-Feng, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Characteristics of interaction between single-layer graphene on copper substrate and groove. Acta Physica Sinica, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [10] Bai Qing-Shun, Shen Rong-Qi, He Xin, Liu Shun, Zhang Fei-Hu, Guo Yong-Bo. Interface adhesion property between graphene film and surface of nanometric microstructure. Acta Physica Sinica, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [11] Wang Jun-Jun, Li Tao, Li Xiong-Ying, Li Hui. Wettability and morphology of liquid gallium on graphene surface. Acta Physica Sinica, 2018, 67(14): 149601. doi: 10.7498/aps.67.20172717
    [12] Yang Hui-Hui, Gao Feng, Dai Ming-Jin, Hu Ping-An. Research progress of direct synthesis of graphene on dielectric layer. Acta Physica Sinica, 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [13] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [14] Li Zhi-Quan, Zhang Ming, Peng Tao, Yue Zhong, Gu Er-Dan, Li Wen-Chao. Improvement of the local characteristics of graphene surface plasmon based on guided-mode resonance effect. Acta Physica Sinica, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [15] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [16] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [17] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] Li Feng, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Deng Kai-Ming. Density functional study on the different behaviors of Pd and Pt coating on graphene. Acta Physica Sinica, 2014, 63(17): 176802. doi: 10.7498/aps.63.176802
    [19] Wang Lang, Feng Wei, Yang Lian-Qiao, Zhang Jian-Hua. The pre-treatment of copper for graphene synthesis. Acta Physica Sinica, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [20] Li Li-Min, Pan Hai-Bin, Yan Wen-Sheng, Xu Peng-Shou, Wei Shi-Qiang, Chen Xiu-Fang, Xu Xian-Gang, Kang Chao-Yang, Tang Jun. Preparation of graphene on different-polarity 6H-SiC substrates and the study of their electronic structures. Acta Physica Sinica, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
Metrics
  • Abstract views:  6143
  • PDF Downloads:  222
  • Cited By: 0
Publishing process
  • Received Date:  17 May 2017
  • Accepted Date:  19 July 2017
  • Published Online:  05 December 2017

/

返回文章
返回
Baidu
map