Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tunable terahertz absorber based on complementary graphene meta-surface

Zhang Hui-Yun Huang Xiao-Yan Chen Qi Ding Chun-Feng Li Tong-Tong Lü Huan-Huan Xu Shi-Lin Zhang Xiao Zhang Yu-Ping Yao Jian-Quan

Citation:

Tunable terahertz absorber based on complementary graphene meta-surface

Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, metamaterials have attracted considerable attention because of their unique properties and potential applications in many areas, such as in bio-sensing, imaging, and communication. Among these researches, the metamaterial absorber has aroused much interest of researchers. The metamaterial absorber is important due to a broad range of potential application to solar energy, sensing, coatings for reducing the reflection, and selective thermal emitters. As a two-dimensional honeycomb structure composed of a single layer carbon atom, graphene is a promising candidate for tuning metamaterials and plasmonic structures due to its unique properties which differ substantially from those of metal and semiconductors. In this paper, we propose a tunable terahertz absorber based on graphene complementary metamaterial structure by removing periodic cut-wires on the graphene meta-surface. On the basis of the tunability of graphene conductivity, the absorber possesses a frequency tunable characteristic resulting from the change of graphene Femi level by altering the applied voltage. Here, we mainly study the influences of Fermi level of graphene and the size of the structure on the absorption characteristic of this metamaterial absorber. We finally obtain the corresponding Femi level and structural size under the perfect absorption condition. In addition, we utilize the multiple reflection theory to explore the physical mechanism, and verify the feasibility of the simulation method at the same time. The research indicates that the absorber can achieve 99.9% perfect absorption at 1.865 THz when the graphene Femi level is 0.6 eV, the thickness of substrate is 13 m, and the length and width of slit are 2.9 m and 0.1 m, respectively. When graphene Femi level increases from 0.4 eV to 0.9 eV, the resonance frequency of the absorber is blue-shifted from 1.596 THz to 2.168 THz. Meanwhile, the absorption rate increases from 84.68% at 0.4 eV to a maximum value of 99.9% at 0.6 eV, then gradually decreases to 86.63% at 0.9 eV. The maximum modulation of the absorption rate is 84.55% by varying the Femi level. When the thickness of substrate increases, the resonant frequency is red-shifted. The resonant frequency is blue-shifted when both the width and the length of the cut-wire on graphene increase. On the basis of the proposed graphene meta-surface absorber, one can gain different resonant frequencies by adjusting the structure geometric size and graphene Femi level. The graphene complementary structure can also be designed into different patterns to achieve the purpose of practical application.
      Corresponding author: Zhang Hui-Yun, sdust_thz@126.com;qchen1103@163.com ; Chen Qi, sdust_thz@126.com;qchen1103@163.com
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FM011), the Qingdao City Innovative Leading Talent Plan, China (Grant No. 13-CX-25), the CAEP THz Science and Technology Foundation (Grant No. 201401), the Science and Technology Project of Qingdao Economic and Technical Development Zone, China (Grant No. 2013-1-64), and the China Scholarship Council.
    [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Zhang X C 2002 Phys. Med. Biol. 47 3667

    [3]

    Yahiaoui R, Guillet J P, Miollis F D, Mounaix P 2013 Opt. Lett. 38 4988

    [4]

    Alves F, Grbovic D, Keaney B, Lavrik N V, Karunasiri G 2013 Opt. Express 21 13256

    [5]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [6]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [7]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett. 36 945

    [8]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2013 Appl. Opt. 52 4536

    [9]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [10]

    Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [11]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [12]

    Dai Y H, Chen X L, Zhao Q, Zhang J H, Chen H W, Yang C R 2013 Acta Phys. Sin. 62 064101 (in Chinese) [戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁 2013 62 064101]

    [13]

    Mo M M, Wen Q Y, Chen Z, Yang Q H, Li S, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 237801 (in Chinese) [莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武 2013 62 237801]

    [14]

    Ma Y, Chen Q, Grant J, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476

    [15]

    Ye Y Q, Jin Y, He S L 2010 J. Opt. Soc. Am. B 27 498

    [16]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photon. Technol. Lett. 26 111

    [17]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [18]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2014 Opt. Lett. 39 1589

    [19]

    Liu C, Ye J, Zhang Y 2010 Opt. Commun. 283 865

    [20]

    Zhou H, Ding F, Ji Y, He S L 2011 Prog. Electromagn. Res. 119 449

    [21]

    Hu F R, Qian Y X, Li Z, Niu J H, Nie K, Xiong X M, Zhang W T, Peng Z Y 2013 J. Opt. 15 055101

    [22]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [23]

    Andryieuski A, Lavrinenko A V 2013 Opt. Express 21 9144

    [24]

    VasićB, GajićR 2013 Appl. Phys. Lett. 103 261111

    [25]

    Woo J M, Kim M S, Kim H W, Jang J H 2014 Appl. Phys. Lett. 104 081106

    [26]

    Amin M, Farhat M, Bağci H 2013 Opt. Express 21 29938

    [27]

    He S, Chen T 2013 IEEE Trans. Terahertz Sci. Technol. 3 757

    [28]

    Xu B Z, Gu C, Li Z 2013 Opt. Express 21 23803

    [29]

    Wu B, Tuncer H M, Naeem M, Yang B, Cole M T, Milne W I, Hao Y 2014 Sci. Rep. 4 4130

    [30]

    Zhu Z H, Guo C C, Zhang J F, Liu K, Yuan X D, Qin S Q 2015 Appl. Phys. Express 8 015102

    [31]

    Zhang Y, Feng Y, Zhu B, Zhao J, Jiang T 2014 Opt. Express 22 22743

    [32]

    Zhang Y P, Li T T, L H H, Huang X Y, Zhang X, Xu S L, Zhang H Y 2015 Chin. Phys. Lett. 32 068101

    [33]

    Fan Y, Shen N H, Koschny T, Soukoulis C M 2015 ACS Photon. 2 151

    [34]

    Chen H T 2012 Opt. Express 20 7165

    [35]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [36]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys. Condens. Matter 19 026222

    [37]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257

    [38]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318

    [39]

    Hwang E H, Sarma S D 2007 Phys. Rev. B 75 205418

  • [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Zhang X C 2002 Phys. Med. Biol. 47 3667

    [3]

    Yahiaoui R, Guillet J P, Miollis F D, Mounaix P 2013 Opt. Lett. 38 4988

    [4]

    Alves F, Grbovic D, Keaney B, Lavrik N V, Karunasiri G 2013 Opt. Express 21 13256

    [5]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [6]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [7]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett. 36 945

    [8]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2013 Appl. Opt. 52 4536

    [9]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [10]

    Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [11]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [12]

    Dai Y H, Chen X L, Zhao Q, Zhang J H, Chen H W, Yang C R 2013 Acta Phys. Sin. 62 064101 (in Chinese) [戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁 2013 62 064101]

    [13]

    Mo M M, Wen Q Y, Chen Z, Yang Q H, Li S, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 237801 (in Chinese) [莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武 2013 62 237801]

    [14]

    Ma Y, Chen Q, Grant J, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476

    [15]

    Ye Y Q, Jin Y, He S L 2010 J. Opt. Soc. Am. B 27 498

    [16]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photon. Technol. Lett. 26 111

    [17]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [18]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2014 Opt. Lett. 39 1589

    [19]

    Liu C, Ye J, Zhang Y 2010 Opt. Commun. 283 865

    [20]

    Zhou H, Ding F, Ji Y, He S L 2011 Prog. Electromagn. Res. 119 449

    [21]

    Hu F R, Qian Y X, Li Z, Niu J H, Nie K, Xiong X M, Zhang W T, Peng Z Y 2013 J. Opt. 15 055101

    [22]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [23]

    Andryieuski A, Lavrinenko A V 2013 Opt. Express 21 9144

    [24]

    VasićB, GajićR 2013 Appl. Phys. Lett. 103 261111

    [25]

    Woo J M, Kim M S, Kim H W, Jang J H 2014 Appl. Phys. Lett. 104 081106

    [26]

    Amin M, Farhat M, Bağci H 2013 Opt. Express 21 29938

    [27]

    He S, Chen T 2013 IEEE Trans. Terahertz Sci. Technol. 3 757

    [28]

    Xu B Z, Gu C, Li Z 2013 Opt. Express 21 23803

    [29]

    Wu B, Tuncer H M, Naeem M, Yang B, Cole M T, Milne W I, Hao Y 2014 Sci. Rep. 4 4130

    [30]

    Zhu Z H, Guo C C, Zhang J F, Liu K, Yuan X D, Qin S Q 2015 Appl. Phys. Express 8 015102

    [31]

    Zhang Y, Feng Y, Zhu B, Zhao J, Jiang T 2014 Opt. Express 22 22743

    [32]

    Zhang Y P, Li T T, L H H, Huang X Y, Zhang X, Xu S L, Zhang H Y 2015 Chin. Phys. Lett. 32 068101

    [33]

    Fan Y, Shen N H, Koschny T, Soukoulis C M 2015 ACS Photon. 2 151

    [34]

    Chen H T 2012 Opt. Express 20 7165

    [35]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [36]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys. Condens. Matter 19 026222

    [37]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257

    [38]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318

    [39]

    Hwang E H, Sarma S D 2007 Phys. Rev. B 75 205418

  • [1] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] Wei Ning, Zhao Si-Han, Li Zhi-Hui, Ou Bing-Xian, Hua An-Ping, Zhao Jun-Hua. Effects of graphene size and arrangement on crack propagation of graphene/aluminum composites. Acta Physica Sinica, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [3] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [4] Jiang Li-Ying, Yi Ying-Ting, Yi Zao, Yang Hua, Li Zhi-You, Su Ju, Zhou Zi-Gang, Chen Xi-Fang, Yi You-Gen. A four-band perfect absorber based on high quality factor and high figure of merit of monolayer molybdenum disulfide. Acta Physica Sinica, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [5] Jiang Xiao-Wei, Wu Hua. Metamaterial absorber with controllable absorption wavelength and absorption efficiency. Acta Physica Sinica, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [6] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [7] Chen Jun, Yang Mao-Sheng, Li Ya-Di, Cheng Deng-Ke, Guo Geng-Liang, Jiang Lin, Zhang Hai-Ting, Song Xiao-Xian, Ye Yun-Xia, Ren Yun-Peng, Ren Xu-Dong, Zhang Ya-Ting, Yao Jian-Quan. Tunable terahertz wave broadband absorber based on metamaterial. Acta Physica Sinica, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [8] Wang Lei, Xiao Rui-Wen, Ge Shi-Jun, Shen Zhi-Xiong, Lü Peng, Hu Wei, Lu Yan-Qing. Research progress of terahertz liquid crystal materials and devices. Acta Physica Sinica, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [9] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [10] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [11] Wang Yue, Leng Yan-Bing, Wang Li, Dong Lian-He, Liu Shun-Rui, Wang Jun, Sun Yan-Jun. Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial. Acta Physica Sinica, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [12] Han Jiang-Feng, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Zhang Chen. Design of broadband reflective 90 polarization rotator based on metamaterial. Acta Physica Sinica, 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [13] Xu Jie, Zhou Li, Huang Zhi-Xiang, Wu Xian-Liang. Study on the absorbing properties of critically coupled resonator with graphene. Acta Physica Sinica, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [14] Jin Qin, Dong Hai-Ming, Han Kui, Wang Xue-Feng. Ultrafast dynamic optical properties of graphene. Acta Physica Sinica, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [15] Lu Xiao-Bo, Zhang Guang-Yu. Graphene/h-BN Moiré superlattice. Acta Physica Sinica, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [16] Huang Xiang-Qian, Lin Chen-Fang, Yin Xiu-Li, Zhao Ru-Guang, Wang En-Ge, Hu Zong-Hai. Hydrogen adsorption on one-dimensional graphene superlattices. Acta Physica Sinica, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [17] Ma Yan-Bing, Zhang Huai-Wu, Li Yuan-Xun. Study on a novel dual-band metamaterial absorber by using fractal Koch curves. Acta Physica Sinica, 2014, 63(11): 118102. doi: 10.7498/aps.63.118102
    [18] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [19] Liu Ya-Hong, Fang Shi-Lei, Gu Shuai, Zhao Xiao-Peng. Multiband and broadband metamterial absorbers. Acta Physica Sinica, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [20] Shen Xiao-Peng, Cui Tie-Jun, Ye Jian-Xiang. Dual band metamaterial absorber in microwave regime. Acta Physica Sinica, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
Metrics
  • Abstract views:  8466
  • PDF Downloads:  775
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2015
  • Accepted Date:  17 September 2015
  • Published Online:  05 January 2016

/

返回文章
返回
Baidu
map