搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于导模共振效应提高石墨烯表面等离子体的局域特性

李志全 张明 彭涛 岳中 顾而丹 李文超

引用本文:
Citation:

基于导模共振效应提高石墨烯表面等离子体的局域特性

李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超

Improvement of the local characteristics of graphene surface plasmon based on guided-mode resonance effect

Li Zhi-Quan, Zhang Ming, Peng Tao, Yue Zhong, Gu Er-Dan, Li Wen-Chao
PDF
导出引用
  • 本文构建了一种包含石墨烯和亚波长光栅的复合结构, 借助衍射光栅的导模共振效应, 在石墨烯表面激发高局域性表面等离子体激元, 研究了石墨烯与光栅结构对表面等离子体激元局域特性的影响规律, 并借助基于有限元法的COMSOL软件, 分析了缓冲层厚度、光栅周期、载流子迁移率和费米能级对石墨烯的表面电场、品质因子Q和有效模式面积Seff的影响. 结果表明, 石墨烯表面等离子体激元的局域性在特定的参数点获得显著提高: 当 = 0.7 m2/(Vs)时, 品质因子达到最大值Qmax = 1793; 当p = 235 nm或EF = 0.72 eV时, 表面电场达到了入射光的3000倍以上. 强烈的局域性导致强烈 的光-物质相互作用, 因而本文提出的复合结构可实现高灵敏度传感器和高效率的非线性光学设备, 极大地扩展了石墨烯在纳米光学领域中的应用.
    Graphene is a one-atom-thick planar sheet of sp2-bonded carbon atoms that are densely packed in a honeycomb crystal lattice. Graphene has been found to support plasmons in a wide range from infrared to terahertz. The confinement of plasmons in graphene is stronger than that on metallic surface. Moreover, the plasmon properties can be dynamically adjusted by doping or grating graphene. In this study, a composite structure comprised of graphene and subwavelength grating is proposed. Highly confined plasmons in graphene are excited by using a diffraction grating with guided mode resonance effect. The wave vector of plasmonic wave in graphene is far larger than that of light in vacuum. To excite plasmons in graphene with a freespace optical wave, their large difference in wave vector must be overcome. Optical gratings are widely used to compensate for wave vector mismatches. A diffraction wave generated by the grating structure can overcome the large wave vector difference and excite surface plasmons. The guided-mode resonance can greatly enhance the intensity of the diffraction field and the coupling efficiency between graphene and incident light. When the phase matching between illuminating wave and a guide mode supported by grating is achieved, guided-mode resonance effect occurs. A nearly 100% diffraction efficiency peak in the reflection or transmission spectrum occurs at a certain wavelength. In this study, the influences of graphene and grating structure on the local characteristics (the surface electric field Ex/Ein, quality factor Q, and effective mode area Seff) of surface plasmons are investigated. The effects of the structural parameters (the thickness of the buffer layer T2, the grating period p, the carrier mobility , and the Fermi level EF) on localization properties are analyzed by the finite element method (COMSOL). The results reveal that the localizations of the surface plasmons in the graphene surface is significantly improved at the certain parameters. 1) The increase of T2 will reduce the intensity of electric field on graphene (Ex/Ein), but the quality factor will obtain a certain increase. The excition of highly confined SPPs needs to improve Q and keep the intensity of Ex/Ein, so in this study T2 = 10 nm. 2) By adjusting the quality factor of SPPs can be improved significantly without changing the resonance frequency ( = 0.7 m2(Vs), Qmax = 1793). 3) Small changes in p and EF will make the resonance peak shift obviously, and the electric field on graphene is greatly enhanced (p = 235 nm, Ex/Ein = 3154; EF = 0.72 eV, and Ex/Ein = 3968). Strong localization leads to strong light-matter interaction, and thus the proposed structure has the potential to be used as sensors with high sensitivity and high-efficiency nonlinear optical devices, greatly expanding the application of graphene in nano optics.
      通信作者: 李志全, lzq54@ysu.edu.cn
    • 基金项目: 河北省百人计划(批准号:4570018)和河北省自然科学基金(批准号:F2014501150)资助的课题.
      Corresponding author: Li Zhi-Quan, lzq54@ysu.edu.cn
    • Funds: Project supported by the 100 Talents Project of Hebei Province, China (Grant No. 4570018) and the Natural Science Foundation of Hebei Province, China (F2014501150).
    [1]

    Xu H J 2013 M. S. Dissertation ( Nanjing: Southeast University) (in Chinese) [徐红菊 2013 硕士学位论文 (南京:东南大学)]

    [2]

    Liu J L 2010 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese) [刘建龙 2010 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [3]

    Li S J, Gan S, Mu H R, Xu Q Y, Qiao H, Li P F, Xue Y Z, Bao Q L 2014 New Carbon Mater. 29 329 (in Chinese) [李绍娟, 甘胜, 沐浩然, 徐庆阳, 乔虹, 李鹏飞, 薛运周, 鲍桥梁 2014 新型炭材料 29 329]

    [4]

    Wang B, Zhang X, Yuan X, Teng J 2012 Appl. Phys. Lett. 100 131111

    [5]

    Liu Q Y, Zhang Y P, Zhang H Y, L H H, Li T T, Ren G J 2014 Acta Phys. Sin. 63 075201 (in Chinese) [刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军 2014 63 075201]

    [6]

    Liu P Q, Valmorra F, Maissen C, Faist J 2015 Optica 2 135

    [7]

    Wang W, Leung K K, Fong W K, Wang S F, Hui Y Y Y, Lau S P P, Surya C 2012 Proc. SPIE 8470 84700E

    [8]

    Nasari H, Abrishamian M S 2015 J. Lightwave Technol. 33 1

    [9]

    Gerber J A, Samuel B, OCallahan B T, Raschke M B 2014 Phys. Rev. Lett. 113 055502

    [10]

    Wu H Q, Linghu C Y, Lv H M, Qian H 2013 Chin. Phys. B 22 098106

    [11]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [12]

    Chen P, Al A 2011 ACS Nano 5 5855

    [13]

    Dubinov A A, Aleshkin V Y, Mitin V 2011 J. Phys. Conden. Matter 23 145302

    [14]

    Vakil A, Engheta N 2011 Science 332 1291

    [15]

    Chen J, Badioli M, AIonso-Gonzalez P, Thongrat-tanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Garca de Abajo F G, Hillenbrand R, Koppens F H L 2012 Nature 487 77

    [16]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [17]

    Zhang K B, Zhang H, Cheng X L 2016 Chin. Phys. B 25 037104

    [18]

    Batke E, Heitmann D, Tu C W 1986 Phy. Rev. B 34 6951

    [19]

    Wu S Q, Liu J S, Wang S L, Hu B 2013 Chin. Phys. B 22 104207

    [20]

    Tae K J, Jaehyeon K, Hongkyw C, Choon-Gi C, Sung-Yool C 2012 Nanotechnology 23 132

    [21]

    Long J, Baisong G, Jason H, Caglar G, Michael M, Zhao H, Hans A B, Xiaogan L, Alex Z, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [22]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330

    [23]

    Zheyu F, Sukosin T, Andrea S, Zheng L, Lulu M, Yumin W, Pulickel M A, Peter N, Naomi J H, Javier G D A 2013 ACS Nano 7 2388

    [24]

    Fang Z, Wang Y, Schlather A E, Zhang L, Pulickel M A, Abajo F J G D, Peter N, Xing Z, Naomi J H 2014 Nano Lett. 14 299

    [25]

    Priambodo P S 2003 Dissertation Abstracts International 26 203

    [26]

    Zhao Y, Chen G, Tao Z, Zhang C, Zhu Y 2014 Rsc Adv. 4 26535

    [27]

    Gao W, Shu J, Qiu C, Xu Q 2012 ACS Nano 6 7806

    [28]

    Nikitin A Y, Guinea F, Garcia-Vidal F J, Martin-Moreno L 2011 Phys. Rev. B 84 3239

    [29]

    Yang X X, Kong X Q, Dai Q 2015 Acta Phys. Sin. 64 106801 (in Chinese) [杨晓霞, 孔祥天, 戴庆 2015 64 106801]

    [30]

    Xu P P 2014 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [许培鹏 2014 博士学位论文 (杭州: 浙江大学)]

    [31]

    Zhu Y, Bai H, Huang Y 2015 Synthetic Met. 204 57

  • [1]

    Xu H J 2013 M. S. Dissertation ( Nanjing: Southeast University) (in Chinese) [徐红菊 2013 硕士学位论文 (南京:东南大学)]

    [2]

    Liu J L 2010 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese) [刘建龙 2010 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [3]

    Li S J, Gan S, Mu H R, Xu Q Y, Qiao H, Li P F, Xue Y Z, Bao Q L 2014 New Carbon Mater. 29 329 (in Chinese) [李绍娟, 甘胜, 沐浩然, 徐庆阳, 乔虹, 李鹏飞, 薛运周, 鲍桥梁 2014 新型炭材料 29 329]

    [4]

    Wang B, Zhang X, Yuan X, Teng J 2012 Appl. Phys. Lett. 100 131111

    [5]

    Liu Q Y, Zhang Y P, Zhang H Y, L H H, Li T T, Ren G J 2014 Acta Phys. Sin. 63 075201 (in Chinese) [刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军 2014 63 075201]

    [6]

    Liu P Q, Valmorra F, Maissen C, Faist J 2015 Optica 2 135

    [7]

    Wang W, Leung K K, Fong W K, Wang S F, Hui Y Y Y, Lau S P P, Surya C 2012 Proc. SPIE 8470 84700E

    [8]

    Nasari H, Abrishamian M S 2015 J. Lightwave Technol. 33 1

    [9]

    Gerber J A, Samuel B, OCallahan B T, Raschke M B 2014 Phys. Rev. Lett. 113 055502

    [10]

    Wu H Q, Linghu C Y, Lv H M, Qian H 2013 Chin. Phys. B 22 098106

    [11]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [12]

    Chen P, Al A 2011 ACS Nano 5 5855

    [13]

    Dubinov A A, Aleshkin V Y, Mitin V 2011 J. Phys. Conden. Matter 23 145302

    [14]

    Vakil A, Engheta N 2011 Science 332 1291

    [15]

    Chen J, Badioli M, AIonso-Gonzalez P, Thongrat-tanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Garca de Abajo F G, Hillenbrand R, Koppens F H L 2012 Nature 487 77

    [16]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [17]

    Zhang K B, Zhang H, Cheng X L 2016 Chin. Phys. B 25 037104

    [18]

    Batke E, Heitmann D, Tu C W 1986 Phy. Rev. B 34 6951

    [19]

    Wu S Q, Liu J S, Wang S L, Hu B 2013 Chin. Phys. B 22 104207

    [20]

    Tae K J, Jaehyeon K, Hongkyw C, Choon-Gi C, Sung-Yool C 2012 Nanotechnology 23 132

    [21]

    Long J, Baisong G, Jason H, Caglar G, Michael M, Zhao H, Hans A B, Xiaogan L, Alex Z, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [22]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330

    [23]

    Zheyu F, Sukosin T, Andrea S, Zheng L, Lulu M, Yumin W, Pulickel M A, Peter N, Naomi J H, Javier G D A 2013 ACS Nano 7 2388

    [24]

    Fang Z, Wang Y, Schlather A E, Zhang L, Pulickel M A, Abajo F J G D, Peter N, Xing Z, Naomi J H 2014 Nano Lett. 14 299

    [25]

    Priambodo P S 2003 Dissertation Abstracts International 26 203

    [26]

    Zhao Y, Chen G, Tao Z, Zhang C, Zhu Y 2014 Rsc Adv. 4 26535

    [27]

    Gao W, Shu J, Qiu C, Xu Q 2012 ACS Nano 6 7806

    [28]

    Nikitin A Y, Guinea F, Garcia-Vidal F J, Martin-Moreno L 2011 Phys. Rev. B 84 3239

    [29]

    Yang X X, Kong X Q, Dai Q 2015 Acta Phys. Sin. 64 106801 (in Chinese) [杨晓霞, 孔祥天, 戴庆 2015 64 106801]

    [30]

    Xu P P 2014 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [许培鹏 2014 博士学位论文 (杭州: 浙江大学)]

    [31]

    Zhu Y, Bai H, Huang Y 2015 Synthetic Met. 204 57

  • [1] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化.  , 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [2] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应.  , 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [3] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法.  , 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [4] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究.  , 2021, (): . doi: 10.7498/aps.70.20211397
    [5] 郭晓蒙, 青芳竹, 李雪松. 石墨烯在金属表面防腐中的应用.  , 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [6] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性.  , 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [7] 江孝伟, 武华, 袁寿财. 基于金属光栅实现石墨烯三通道光吸收增强.  , 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [8] 高健, 桑田, 李俊浪, 王啦. 利用窄刻槽金属光栅实现石墨烯双通道吸收增强.  , 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [9] 杨慧慧, 高峰, 戴明金, 胡平安. 介电层表面直接生长石墨烯的研究进展.  , 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [10] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器.  , 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [11] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体.  , 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [12] 王茹, 王向贤, 杨华, 叶松. TE0导模干涉刻写周期可调亚波长光栅理论研究.  , 2016, 65(9): 094206. doi: 10.7498/aps.65.094206
    [13] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性.  , 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [14] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究.  , 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [15] 龚健, 张利伟, 陈亮, 乔文涛, 汪舰. 石墨烯基双曲色散特异材料的负折射与体等离子体性质.  , 2015, 64(6): 067301. doi: 10.7498/aps.64.067301
    [16] 乔文涛, 龚健, 张利伟, 王勤, 王国东, 廉书鹏, 陈鹏辉, 孟威威. 梳状波导结构中石墨烯表面等离子体的传播性质.  , 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [17] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究.  , 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [18] 张玉萍, 刘陵玉, 陈琦, 冯志红, 王俊龙, 张晓, 张洪艳, 张会云. 具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应.  , 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [19] 黄洪, 赵青, 焦蛟, 梁高峰, 黄小平. 深亚波长约束的表面等离子体纳米激光器研究.  , 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [20] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究.  , 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
计量
  • 文章访问数:  7182
  • PDF下载量:  452
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-10
  • 修回日期:  2016-03-03
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map