搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用

苑营阔 郭伟玲 杜在发 钱峰松 柳鸣 王乐 徐晨 严群 孙捷

引用本文:
Citation:

石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用

苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷

Applications of graphene transistor optimized fabrication process in monolithic integrated driving gallium nitride micro-light-emitting diode

Yuan Ying-Kuo, Guo Wei-Ling, Du Zai-Fa, Qian Feng-Song, Liu Ming, Wang Le, Xu Chen, Yan Qun, Sun Jie
PDF
HTML
导出引用
  • 在显示领域, 微型发光二极管 (micro-LED) 潜力巨大, 有望引领下一代新型显示技术的发展方向, 其显示性能在很多方面优于现有的液晶、有机发光二极管(OLED), 但巨量的micro-LED像素点与驱动电路不在同一晶圆上制备, 面临巨量转移的技术瓶颈. 本文将新兴的石墨烯场效应晶体管作为驱动元件与氮化镓 (GaN) micro-LED进行单片集成, 因为二者直接制备于同一衬底上, 所以从根源上规避了巨量转移的技术难题. 此外, 传统光刻工艺中紫外光刻胶直接接触石墨烯, 会引入严重掺杂导致场效应晶体管性能较差, 进而影响集成器件性能. 本文提出了一种利用聚甲基丙烯酸甲酯(PMMA)薄膜作为保护层, 直接旋涂紫外光刻胶进行垫层光刻的全新工艺方法, 优化了石墨烯场效应晶体管制备工艺. 首先在分立的石墨烯场效应晶体管中进行验证, 相比于没有进行PMMA薄膜保护的器件, 采用新工艺制备的石墨烯器件狄拉克点的栅极电压 (Vg) 距零点的偏差降低了22 V, 载流子迁移率提升了32%. 此外, 将新工艺应用到集成器件制备后, 发现集成器件性能得到了大幅提升. 利用此新技术, 由于有PMMA的保护, 紫外光刻胶不再与敏感的石墨烯沟道直接接触. 掺杂效应和随之而来的器件性能下降被有效扼制. 因为此技术简便而廉价, 所以也可应用到石墨烯之外的其他二维材料中, 例如MoS2和h-BN, 有望对本领域的器件工程师产生一定的参考价值.
    In the information display field, micro-light-emitting diodes (micro-LEDs) possess high potentials and they are expected to lead the direction of developing the next-generation new display technologies. Their display performances are superior to those produced by the currently prevailing liquid crystal and organic light-emitting diode based technologies. However, the micro-LED pixels and their driving circuits are often fabricated on different wafers, which implies that the so-called mass transfer seems to be inevitable, thus facing an obvious bottleneck. In this paper, the emerging graphene field effect transistors are used as the driving elements and integrated onto the GaN micro-LEDs, which is because the pixels and drivers are prepared directly on the same wafer, the technical problem of mass transfer is fundamentally bypassed. Furthermore, in traditional lithographic process, the ultraviolet photoresist directly contacts the graphene, which introduces severe carrier doping, thereby leading to deteriorated graphene transistor properties. This, not surprisingly, further translates into lower performances of the integrated devices. In the present work, proposed is a technique in which the polymethyl methacrylate (PMMA) thin films act as both the protection layers and the interlayers when optimizing the graphene field effect transistor processing. The PMMA layers are sandwiched between the graphene and the ultraviolet photoresist, which is a brand new device fabrication process. First, the new process is tested in discrete graphene field effect transistors. Compared with those devices that are processed without the PMMA protection thin films, the graphene devices fabricated with the new technology typically show their Dirac point at a gate voltage (Vg) deviation from Vg = 0, that is, 22 V lower than their counterparts. In addition, an increase in the carrier mobility of 32% is also observed. Finally, after applying the newly developed fabrication process to the pixel-and-driver integrated devices, it is found that their performances are improved significantly. With this new technique, the ultraviolet photoresist no longer directly contacts the sensitive graphene channel because of the PMMA protection. The doping effect and the performance dropping are dramatically reduced. The technique is facile and cheap, and it is also applicable to two-dimensional materials besides graphene, such as MoS2 and h-BN. It is hoped that it is of some value for device engineers working in this field.
      通信作者: 郭伟玲, guoweiling@bjut.edu.cn ; 孙捷, jie.sun@fzu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2018YFA0209000)和中国福建光电信息科学与技术创新实验室项目(批准号: 2021ZZ122)资助的课题
      Corresponding author: Guo Wei-Ling, guoweiling@bjut.edu.cn ; Sun Jie, jie.sun@fzu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2018YFA0209000) and the Fujian Provincial Innovation Laboratory of Optoelectronic Information Technology Project, China (Grant No. 2021ZZ122).
    [1]

    Wu T Z, Sher C W, Lin Y, Lee C F, Liang S J, Lu Y J, Chen S W H, Guo W J, Kuo H C, Chen Z 2018 Appl. Sci. -Basel. 8 1557Google Scholar

    [2]

    Ding K, Avrutin V, Lzyumskaya N, Ozgur U, Morkoc H 2019 Appl. Sci. -Basel. 9 1206Google Scholar

    [3]

    Liu Z J, Huang T D, Ma J, Liu C, Lau K M 2014 IEEE Electron Device Lett. 35 330Google Scholar

    [4]

    Lee Y J, Yang Z P, Chen P G, Hsieh Y A, Yao Y C, Liao M H, Lee M H, Wang M T, Hwang J M 2014 Opt. Express 22 A1589Google Scholar

    [5]

    Fu Y, Sun J, Du Z, Guo W, Yan C, Xiong F, Wang L, Dong Y, Xu C, Deng J Gun T, Yan Q 2019 Materials 12 428Google Scholar

    [6]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva, Firsov A A 2004 Science 306 666Google Scholar

    [7]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [8]

    Sul O, Kim K, Choi E, Kil J, Park W, Lee S B 2016 Nanotechnol. 27 505205Google Scholar

    [9]

    Lin Y C, Lu C C, Yeh C H, Jin C H, Suenaga K, Chiu P W 2012 Nano Lett. 12 414Google Scholar

    [10]

    Shao P Z, Zhao H M, Cao H W, Wang X F, Pang Y, Li Y X, Deng N Q, Zhang J, Zhang G Y, Yang Y, Zhang S, Ren T L 2016 Appl. Phys. Lett. 108 203105Google Scholar

    [11]

    Zhang H, Guo X, Niu W, Bao W Z 2020 2D Mater 7 025019Google Scholar

    [12]

    Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J 2009 Nano Lett. 9 30Google Scholar

    [13]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R 2009 Science 324 1312Google Scholar

    [14]

    Kang J, Liu W, Banerjee K 2014 Appl. Phys. Lett. 104 093106Google Scholar

    [15]

    Wu D, Zhang Z, Lv D, Peng Z 2016 Mater. Express 6 198Google Scholar

    [16]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [17]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [18]

    Li L, Yu Y, Ye G, Ge Q, Ou X, Wu H, Feng D, Chen X, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [19]

    Ni Z, Wang Y, Yu T, Shen Z 2008 Nano Res. 1 273Google Scholar

    [20]

    Lara-Avila S, Moth-Poulsen K, Yakimova R, Bjrnholm T, Falko V, Tzalenchuk A, Kubatkin S 2011 Adv. Mater. 23 878Google Scholar

    [21]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206Google Scholar

  • 图 1  基于PMMA作为载体转移图形化电极并进行石墨烯垫层光刻的新工艺的石墨烯晶体管制备流程图

    Fig. 1.  Fabricated process of graphene transistor based on PMMA as the carrier to transfer patterned electrode and followed by graphene photolithography with PMMA underlayer.

    图 2  未做器件工艺的石墨烯(黑色曲线)、有PMMA保护的石墨烯沟道(红色曲线)、无PMMA保护的石墨烯沟道的拉曼光谱(蓝色曲线)

    Fig. 2.  Raman spectra of the graphene that does not undergo any device processing (black curve), graphene channel with PMMA protection (red curve), and graphene channel without PMMA protection (blue curve).

    图 3  (a), (b), (c)分别是未做工艺的石墨烯、新工艺有PMMA保护、旧工艺无PMMA保护ID/IG拉曼显微成像; (d), (e), (f)分别是未做工艺的石墨烯、新工艺有PMMA保护、旧工艺无PMMA保护I2 D/IG拉曼显微成像

    Fig. 3.  (a), (b), (c) are ID/IG Raman mapping of graphene without processing, graphene with new processing with PMMA protection, and graphene with old processing with no PMMA protection, respectively; (d), (e), (f) are I2 D/IG Raman mapping of graphene without processing, graphene with new processing with PMMA protection, and graphene with old processing with no PMMA protection, respectively.

    图 4  (a)在有PMMA垫层保护的情况下, 去胶前后石墨烯场效应晶体管的转移特性曲线; (b) 优化后石墨烯场效应晶体管在室温下的输出特性曲线

    Fig. 4.  (a) In the case of PMMA underlayer protection, the transfer characteristic curve before and after removing the resist from the graphene field effect transistor; (b) output characteristic curves of the optimized graphene field effect transistor at room temperature.

    图 5  有无PMMA保护工艺过程的石墨烯场效应晶体管转移特性曲线

    Fig. 5.  Transfer characteristic curves of graphene field effect transistors with and without PMMA protection processing.

    图 6  室温下石墨烯场晶体管的场效应特性曲线 (a)转移曲线(插图为集成器件等效电路图); (b)输出曲线

    Fig. 6.  Field effect characteristic curve of graphene transistor at room temperature: (a) Transfer curve (The insert show the equivalent circuit diagram of the integrated device); (b) output curve.

    图 7  GaN micro-LED的I-V特性曲线(插图为5 V正向电压下的电致发光照片)

    Fig. 7.  I-V characteristic curve of the GaN micro-LED (The insert shows the light emission photo under 5 V forward voltage).

    图 8  (a)采用新工艺的集成器件I-V曲线; (b)传统光刻工艺集成器件的I-V曲线

    Fig. 8.  I-V characteristic curves of the integrated device: (a) Based on the new process; (b) based on traditional technology.

    图 9  集成器件的工作机制(外加总电压固定为5 V, 交叉点为静态工作点)

    Fig. 9.  Working mechanism of the integrated device (The total applied voltage is fixed at 5 V, and the crossing point is the static working point).

    Baidu
  • [1]

    Wu T Z, Sher C W, Lin Y, Lee C F, Liang S J, Lu Y J, Chen S W H, Guo W J, Kuo H C, Chen Z 2018 Appl. Sci. -Basel. 8 1557Google Scholar

    [2]

    Ding K, Avrutin V, Lzyumskaya N, Ozgur U, Morkoc H 2019 Appl. Sci. -Basel. 9 1206Google Scholar

    [3]

    Liu Z J, Huang T D, Ma J, Liu C, Lau K M 2014 IEEE Electron Device Lett. 35 330Google Scholar

    [4]

    Lee Y J, Yang Z P, Chen P G, Hsieh Y A, Yao Y C, Liao M H, Lee M H, Wang M T, Hwang J M 2014 Opt. Express 22 A1589Google Scholar

    [5]

    Fu Y, Sun J, Du Z, Guo W, Yan C, Xiong F, Wang L, Dong Y, Xu C, Deng J Gun T, Yan Q 2019 Materials 12 428Google Scholar

    [6]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva, Firsov A A 2004 Science 306 666Google Scholar

    [7]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [8]

    Sul O, Kim K, Choi E, Kil J, Park W, Lee S B 2016 Nanotechnol. 27 505205Google Scholar

    [9]

    Lin Y C, Lu C C, Yeh C H, Jin C H, Suenaga K, Chiu P W 2012 Nano Lett. 12 414Google Scholar

    [10]

    Shao P Z, Zhao H M, Cao H W, Wang X F, Pang Y, Li Y X, Deng N Q, Zhang J, Zhang G Y, Yang Y, Zhang S, Ren T L 2016 Appl. Phys. Lett. 108 203105Google Scholar

    [11]

    Zhang H, Guo X, Niu W, Bao W Z 2020 2D Mater 7 025019Google Scholar

    [12]

    Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J 2009 Nano Lett. 9 30Google Scholar

    [13]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R 2009 Science 324 1312Google Scholar

    [14]

    Kang J, Liu W, Banerjee K 2014 Appl. Phys. Lett. 104 093106Google Scholar

    [15]

    Wu D, Zhang Z, Lv D, Peng Z 2016 Mater. Express 6 198Google Scholar

    [16]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [17]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [18]

    Li L, Yu Y, Ye G, Ge Q, Ou X, Wu H, Feng D, Chen X, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [19]

    Ni Z, Wang Y, Yu T, Shen Z 2008 Nano Res. 1 273Google Scholar

    [20]

    Lara-Avila S, Moth-Poulsen K, Yakimova R, Bjrnholm T, Falko V, Tzalenchuk A, Kubatkin S 2011 Adv. Mater. 23 878Google Scholar

    [21]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206Google Scholar

  • [1] 姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制.  , 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [2] 苗春贺, 袁良柱, 陆建华, 王鹏飞, 徐松林. 聚甲基丙烯酸甲酯的冲击破碎扩散特性.  , 2022, 71(21): 216201. doi: 10.7498/aps.71.20220740
    [3] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管.  , 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [4] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究.  , 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [5] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究.  , 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [6] 郭伟玲, 邓杰, 王嘉露, 王乐, 邰建鹏. 具有石墨烯/铟锑氧化物复合透明电极的GaN发光二极管.  , 2019, 68(24): 247303. doi: 10.7498/aps.68.20190983
    [7] 王俊珺, 李涛, 李雄鹰, 李辉. 液态镓在石墨烯表面的润湿性及形貌特征.  , 2018, 67(14): 149601. doi: 10.7498/aps.67.20172717
    [8] 王波, 房玉龙, 尹甲运, 刘庆彬, 张志荣, 郭艳敏, 李佳, 芦伟立, 冯志红. 表面预处理对石墨烯上范德瓦耳斯外延生长GaN材料的影响.  , 2017, 66(24): 248101. doi: 10.7498/aps.66.248101
    [9] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用.  , 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [10] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算.  , 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [11] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响.  , 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [12] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究.  , 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [13] 刘木林, 闵秋应, 叶志清. 硅衬底InGaN/GaN基蓝光发光二极管droop效应的研究.  , 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [14] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究.  , 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [15] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法.  , 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [16] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性.  , 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [17] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究.  , 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [18] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究.  , 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [19] 樊荣伟, 夏元钦, 李晓晖, 姜玉刚, 陈德应. 宽带输出PM580掺杂聚甲基丙烯酸甲酯固体染料激光器研究.  , 2008, 57(9): 5705-5708. doi: 10.7498/aps.57.5705
    [20] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究.  , 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
计量
  • 文章访问数:  5416
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-19
  • 修回日期:  2021-05-24
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回
Baidu
map