搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯的太赫兹漫反射表面快速设计方法

王健 张超越 姚昭宇 张弛 许锋 阳媛

引用本文:
Citation:

基于石墨烯的太赫兹漫反射表面快速设计方法

王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛

A method of rapidly designing graphene-based terahertz diffusion surface

Wang Jian, Zhang Chao-Yue, Yao Zhao-Yu, Zhang Chi, Xu Feng, Yang Yuan
PDF
HTML
导出引用
  • 漫反射电磁表面能够提高目标被探测的难度, 实现电磁消隐的功能. 太赫兹漫反射电磁表面有望在下一代雷达与通信场景中作为一种智能隐身蒙皮使用, 具有广阔的应用前景. 本文利用石墨烯在太赫兹频段优异的电磁可调特性, 并基于谐振模式的开关机理设计了一种反射场具有反相位的石墨烯/金属协同单元结构, 且相位的切换由偏置电压动态控制. 另一方面, 不同于金属材料, 石墨烯具有不可忽略的损耗特性, 导致了所设计的结构在谐振/非谐振两种反相位状态对应的反射幅度不一致, 根据场的干涉与叠加原理, 其不利于远场相干相消, 难以获得理想的漫反射效果. 本文提出了一种将反相位单元结构进行二次组合形成“分子”结构的方法, 并将其作为反射表面的基本元素, 进而运用粒子群算法, 优化“分子”结构的排布方式. 计算结果表明, 使用这种方法设计的动态漫反射表面, 具有收敛速度快、远场峰值小的优势.
    Electromagnetic diffusion surface can reduce the radar cross section, thus profiting stealth of targets. Terahertz diffusion surface has a wide prospect in the field of next-generation radar and communication, promising to act as a kind of intelligent smart skin. In this paper, utilizing the excellent tunable properties of graphene in the terahertz band, a hybrid structure of graphene and metal which has inverse phase response of reflecting waves is proposed. The reflection phase switches in the mechanism of resonant modes and can be controlled efficiently by the bias voltage. Meanwhile, unlike metal materials, graphene has a non-negligible loss characteristic, which leads the response amplitudes corresponding to the two different switching states to be inconsistent with each other. According to the interference and superposition principle of electromagnetic field, it is not conducive to eliminating the coherent far-field, leading to an unsatisfactory diffusion result. In this paper, we present a “molecular” structure by secondary combination of the above-mentioned reverse phase element states, and take it as the basic element of the diffusion surface. Finally, we use particle swarm optimization to optimize the arrangement of “molecular” structures. The final diffusion surface consists of a combinatorial design of “molecules” rather than randomly distributed reflection units. In addition, molecules designed artificially have similar amplitude responses but different phase responses, which improves the convergence speed and reduces the computation quantity during algorithm evolution. The method of designing molecular structure, described in this paper, is simple, rapid and widely applicable, which effectively improves the amplitude-to-phase modulation ability of graphene metasurface against electromagnetic waves. When diffuse reflection optimization is applied to most of graphene metasurfaces, the method described in this paper can achieve the results that are the same as or even better than the results after a large number of iterations of traditional particle swarm optimization in the most computation-efficient manner. The results show that the dynamic diffusion surface designed by this method has the advantages of fast convergence speed and small far-field peak.
      通信作者: 许锋, feng.xu@njupt.edu.cn
    • 基金项目: 射频集成与微组装技术国家地方联合工程实验室开放课题基金(批准号: KFJJ20180205)、南京邮电大学引进人才科研启动基金(批准号: NY218113)和南京邮电大学校级科研基金(批准号: NY219077)资助的课题.
      Corresponding author: Xu Feng, feng.xu@njupt.edu.cn
    • Funds: Project suported by the Open Fund of the National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, China (Grant No. KFJJ20180205), the Science and Research Start-up Fund for Introducing Talents of Nanjing University of Posts and Telecommunication, China (Grant No. NY218113), and the Nanjing University of Posts and Telecommunication Science Foundation, China (Grant No. NY219077).
    [1]

    Zhao J, Cheng Q, Wang X K, Yuan M J, Zhou X, Fu X J, Qi M Q, Liu S, Chen H B, Zhang Y 2016 Adv. Opt. Mater. 4 1773Google Scholar

    [2]

    Benz A, Krall M, Schwarz S, Dietze D, Detz H, Andrews A M, Schrenk W 2014 Sci. Rep. 4 4296Google Scholar

    [3]

    Nagatsuma T 2011 IEICE Electronic Exp. 8 1127Google Scholar

    [4]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101Google Scholar

    [5]

    Alves F, Grbovic D, Kearney B, Karunasiri G 2012 Opt. Lett. 37 1886Google Scholar

    [6]

    Iwaszczuk K, Strikwerda A C, Fan K, Zhang X, Averitt R D, Jepsen P U 2012 Opt. Express 20 635Google Scholar

    [7]

    李思佳, 曹祥玉, 高军, 郑秋容, 陈红雅, 赵一, 杨群 2013 62 194101Google Scholar

    Li S J, Cao X Yu, Gao J Z, Qiu R Z, Yi Y Q 2013 Acta Phys. Sin. 62 194101Google Scholar

    [8]

    Cheng C W, Abbas M N, Chiu C W, Lai K T, Shih M H, Chang Y C 2012 Opt. Express 20 10376Google Scholar

    [9]

    Zhao Y, Cao X, Gao J, Sun Y, Yang H, Liu X, Zhou Y, Han T, Chen W 2016 Sci Rep 6 23896Google Scholar

    [10]

    闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 64 158101Google Scholar

    Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta Phys. Sin. 64 158101Google Scholar

    [11]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl. 3 218Google Scholar

    [12]

    Liu X, Gao J, Xu L, Cao X, Zhao Y, Li S 2017 IEEE Antennas Wirel. Propag. Lett. 16 724Google Scholar

    [13]

    Zhang H, Lu Y, Su J, Li Z, Liu J, Yang Y 2017 Electron. Lett. 53 187Google Scholar

    [14]

    Zhao J, Cheng Q, Wang T Q, Yuan W, Cui T J 2017 Opt. Express 25 1050Google Scholar

    [15]

    Sui S, Ma H, Lv Y, Wang J, Li Z, Zhang J, Xu Z, Qu S 2018 Opt. Express 26 1443Google Scholar

    [16]

    Zhuang Y, Wang G, Liang J, Zhang Q 2017 IEEE Antennas Wirel. Propag. Lett. 16 2606Google Scholar

    [17]

    Qiu L, Xiao G, Kong X, Xiong C 2019 Opt. Express 27 21226Google Scholar

    [18]

    Gao L H, Cheng Q, Yang J, Ma S, Zhao J, Liu S, Chen H, He Q, Jiang W X, Ma H F 2015 Light-Sci. Appl. 4 324Google Scholar

    [19]

    Wang J, Lu W B, Li X B, Liu J L 2016 IEEE Photonics Technol. Lett. 28 971Google Scholar

    [20]

    李小兵, 陆卫兵, 刘震国, 陈昊 2018 67 184101Google Scholar

    Li X B, Lu W B, Liu Z G, Chen H 2018 Acta Phys. Sin. 67 184101Google Scholar

    [21]

    张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 66 204101Google Scholar

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101Google Scholar

  • 图 1  (a) 石墨烯漫反射表面单元结构; (b) 谐振/非谐振状态下电流分布

    Fig. 1.  (a) Unit cell of graphene diffuse reflecting surface; (b) the current distribution under resonance/non-resonance condition.

    图 2  石墨烯表面阻抗色散曲线 (a) 实部; (b) 虚部

    Fig. 2.  Dispersion curves of graphene surface impedance: (a) Real part; (b) imaginary part.

    图 3  石墨烯漫反射表面单元结构的反射幅度(a)与相位(b)响应

    Fig. 3.  Reflecting response of amplitude (a) and phase (b) of graphene diffuse reflecting surface unit cell.

    图 4  石墨烯化学势不同情况下单元结构的方向图函数 (a) 0 eV; (b) 0.8 eV

    Fig. 4.  Pattern function of unit cell under different chemical potentials of graphene: (a) 0 eV; (b) 0.8 eV.

    图 5  石墨烯动态漫反射表面的设计方法 (a) “原子”性质; (b) “分子”图案; (c) 算法流程

    Fig. 5.  Design method of dynamic diffusion reflecting surface of graphene: (a) “Atom” property; (b) “lattice” structure; (c) algorithm flowchart.

    图 6  (a) 基于“分子”方法的漫反射计算迭代收敛过程; (b) 优化后产生漫反射表面远场分布; (c) 漫反射表面的阵列结构

    Fig. 6.  (a) Iterative convergence process of diffusion calculation; (b) far field distribution of diffusion surface after optimization; (c) array structure of reflecting surface.

    图 7  三种规模的“分子”阵列情形下使用传统PSO算法与本文提出的方法优化过程的对比 (a) 9 × 9; (b) 18 × 18; (c) 27 × 27

    Fig. 7.  Comparisons between the traditional PSO and the proposed method in this paper for three sizes of “molecular” arrays: (a) 9 × 9; (b) 18 × 18; (c) 27 × 27.

    图 8  三种规模的“分子”阵列情形下使用传统PSO算法与本文提出的方法的粒子分布对比 (a) 9 × 9; (b) 18 × 18; (c) 27 × 27

    Fig. 8.  Particle distribution comparisons between the traditional PSO algorithm and the proposed method for three sizes of “molecular” arrays: (a) 9 × 9; (b) 18 × 18; (c) 27 × 27.

    表 1  传统PSO算法与本文提出的方法的效果对比

    Table 1.  Effect comparison between the traditional PSO and the proposed method in this paper.

    阵列
    规模
    传统PSO 本文方法
    远场峰
    值/(V·m–1)
    优化效
    率/dB
    远场峰
    值/(V·m–1)
    优化效
    率/dB
    9 × 9 10.08 –16.80 6.72 –21.00
    18 × 18 27.60 –20.74 19.60 –23.71
    27 × 27 45.00 –23.54 34.00 –25.97
    下载: 导出CSV

    表 2  传统PSO算法与本文提出的方法的粒子分布比较

    Table 2.  Particle distribution comparisons between the traditional PSO and the proposed method in this paper.

    阵列规模 粒子方差 粒子均值
    传统PSO 本文方法 传统PSO 本文方法
    9 × 9 1.12 0.19 11.34 7.09
    18 × 18 2.04 1.65 28.45 21.67
    27 × 27 28.69 10.25 49.57 38.04
    下载: 导出CSV
    Baidu
  • [1]

    Zhao J, Cheng Q, Wang X K, Yuan M J, Zhou X, Fu X J, Qi M Q, Liu S, Chen H B, Zhang Y 2016 Adv. Opt. Mater. 4 1773Google Scholar

    [2]

    Benz A, Krall M, Schwarz S, Dietze D, Detz H, Andrews A M, Schrenk W 2014 Sci. Rep. 4 4296Google Scholar

    [3]

    Nagatsuma T 2011 IEICE Electronic Exp. 8 1127Google Scholar

    [4]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101Google Scholar

    [5]

    Alves F, Grbovic D, Kearney B, Karunasiri G 2012 Opt. Lett. 37 1886Google Scholar

    [6]

    Iwaszczuk K, Strikwerda A C, Fan K, Zhang X, Averitt R D, Jepsen P U 2012 Opt. Express 20 635Google Scholar

    [7]

    李思佳, 曹祥玉, 高军, 郑秋容, 陈红雅, 赵一, 杨群 2013 62 194101Google Scholar

    Li S J, Cao X Yu, Gao J Z, Qiu R Z, Yi Y Q 2013 Acta Phys. Sin. 62 194101Google Scholar

    [8]

    Cheng C W, Abbas M N, Chiu C W, Lai K T, Shih M H, Chang Y C 2012 Opt. Express 20 10376Google Scholar

    [9]

    Zhao Y, Cao X, Gao J, Sun Y, Yang H, Liu X, Zhou Y, Han T, Chen W 2016 Sci Rep 6 23896Google Scholar

    [10]

    闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 64 158101Google Scholar

    Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta Phys. Sin. 64 158101Google Scholar

    [11]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl. 3 218Google Scholar

    [12]

    Liu X, Gao J, Xu L, Cao X, Zhao Y, Li S 2017 IEEE Antennas Wirel. Propag. Lett. 16 724Google Scholar

    [13]

    Zhang H, Lu Y, Su J, Li Z, Liu J, Yang Y 2017 Electron. Lett. 53 187Google Scholar

    [14]

    Zhao J, Cheng Q, Wang T Q, Yuan W, Cui T J 2017 Opt. Express 25 1050Google Scholar

    [15]

    Sui S, Ma H, Lv Y, Wang J, Li Z, Zhang J, Xu Z, Qu S 2018 Opt. Express 26 1443Google Scholar

    [16]

    Zhuang Y, Wang G, Liang J, Zhang Q 2017 IEEE Antennas Wirel. Propag. Lett. 16 2606Google Scholar

    [17]

    Qiu L, Xiao G, Kong X, Xiong C 2019 Opt. Express 27 21226Google Scholar

    [18]

    Gao L H, Cheng Q, Yang J, Ma S, Zhao J, Liu S, Chen H, He Q, Jiang W X, Ma H F 2015 Light-Sci. Appl. 4 324Google Scholar

    [19]

    Wang J, Lu W B, Li X B, Liu J L 2016 IEEE Photonics Technol. Lett. 28 971Google Scholar

    [20]

    李小兵, 陆卫兵, 刘震国, 陈昊 2018 67 184101Google Scholar

    Li X B, Lu W B, Liu Z G, Chen H 2018 Acta Phys. Sin. 67 184101Google Scholar

    [21]

    张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 66 204101Google Scholar

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101Google Scholar

  • [1] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面.  , 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [2] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面.  , 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [3] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用.  , 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [4] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [5] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控.  , 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [6] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射.  , 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [7] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面.  , 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [8] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体.  , 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [9] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性.  , 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [10] 邓新华, 刘江涛, 袁吉仁, 王同标. 全新的电导率特征矩阵方法及其在石墨烯THz频率光学特性上的应用.  , 2015, 64(5): 057801. doi: 10.7498/aps.64.057801
    [11] 邓新华, 袁吉仁, 刘江涛, 王同标. 基于石墨烯的可调谐太赫兹光子晶体结构.  , 2015, 64(7): 074101. doi: 10.7498/aps.64.074101
    [12] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展.  , 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [13] 梁美彦, 张存林. 相位补偿算法对提高太赫兹雷达距离像分辨率的研究.  , 2014, 63(14): 148701. doi: 10.7498/aps.63.148701
    [14] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究.  , 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [15] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收.  , 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [16] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究.  , 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [17] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究.  , 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [18] 田会娟, 牛萍娟. 基于混合漫射近似的空间分辨漫反射光学参量灵敏度的研究.  , 2012, 61(18): 184214. doi: 10.7498/aps.61.184214
    [19] 杨玉平, 冯帅, 冯辉, 潘学聪, 王义全, 王文忠. CuS纳米粒子在太赫兹波段的光电性质研究.  , 2011, 60(2): 027802. doi: 10.7498/aps.60.027802
    [20] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度.  , 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
计量
  • 文章访问数:  6250
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-01
  • 修回日期:  2020-08-10
  • 上网日期:  2021-01-19
  • 刊出日期:  2021-02-05

/

返回文章
返回
Baidu
map