搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态镓在石墨烯表面的润湿性及形貌特征

王俊珺 李涛 李雄鹰 李辉

引用本文:
Citation:

液态镓在石墨烯表面的润湿性及形貌特征

王俊珺, 李涛, 李雄鹰, 李辉

Wettability and morphology of liquid gallium on graphene surface

Wang Jun-Jun, Li Tao, Li Xiong-Ying, Li Hui
PDF
导出引用
  • 液态Ga及其合金的熔点低、毒副作用小、导电率高,使得这类液态金属能像石墨烯一样被广泛应用于微流器件、柔性电子器件中,制备这些器件的关键在于有效控制各生产环节中液态金属在固体界面上的润湿性及形貌特征.基于Lennard-Jones(L-J)势函数,利用分子动力学模拟方法研究了金属Ga在石墨烯表面的润湿性,根据模拟结果拟合的L-J势参数能正确描述Ga原子与衬底之间的相互作用并得到了与实验值极为接近的润湿角,发现衬底与液膜间相互作用的微小改变都会对最终润湿形态产生极大影响,平衡态的润湿角和脱离衬底速度随着Ga-C间势能的减小而增大,并成功获得了不同厚度的Ga液膜在石墨烯表面的形态演变规律,极为符合液态Ga的基本特性.利用所得L-J势函数参数模拟了液态Ga在粗糙度相同但纳米柱尖端形貌不同的C材料表面的润湿演变,发现纳米柱尖端形貌对液态Ga的润湿过程及状态影响极大.
    Liquid gallium and its alloy with low melting point, low toxic and high electrical conductivity are used extensively in burgeoning microfluidic and flexible electronic devices. The key to producing these devices is to effectively control the wettability and morphology of liquid metal on the solid interface in different manufacturing processes. Based on the Lennard-Jones (L-J) potential describing the solid-liquid interaction, the wettabilities of liquid gallium film on the smooth and rough graphene surfaces are effectively investigated by molecular dynamics simulation which is an available and powerful option in this field. Different regimes of wetting are discovered by changing the depth of the L-J potential, and the stable contact angle increases with Ga-C potential depth decreases. The results show that the equilibrium contact angle and the retraction velocity increase with the decrease of the L-J potential between the gallium and graphene, showing that some properties change from complete wetting to hydrophilic and to hydrophobic. The L-J potential depth obtained from the simulation results can be effectively employed to describe the interaction between the liquid gallium and the substrate because the resulting wetting angle is extremely close to the experimental value. When employing the most appropriate L-J potential, it is found that although the initial retraction velocity increases with the proportional decrease of the thickness of the liquid Ga film, there are a few of differences in equilibrium contact angle and final retraction velocity in virtue of the competition between the surface tension of the Ga film and Ga-C interaction. It means that for the wetting state the film thickness is not the crux for changing the equilibrium contact angle and retraction velocity based on a similar conversion of potential energy into kinetic energy. Finally, we investigate the effects of the L-J potential on three rough surfaces which are patterned into three types of nanopillars with different top morphologies respectively. Specifically, it is shown that in spite of similar surface roughness, the wetting morphologies of liquid gallium deposited on various nano-textured graphene surfaces range from hydrophobic to dewetting state, suggesting that not only the roughness but also the morphology of surface can exert an available influence on the wettability of liquid. The wetting transition between the wetting and dewetting state can be achieved dynamically by adjusting the morphologies of nanopillars involved although we still need to go into more detail on the configurable way to fulfill the changing requirements.
      通信作者: 李辉, lihuilmy@hotmail.com
    • 基金项目: 国家自然科学基金(批准号:51671114)资助的课题.
      Corresponding author: Li Hui, lihuilmy@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51671114).
    [1]

    Worthington A M 1876 Proc. R. Soc. 25 261

    [2]

    Josserand C, Thoroddsen S T 2016 Annu. Rev. Fluid Mech. 48 365

    [3]

    Nishimoto S, Bhushan B 2013 RSC Adv. 3 671

    [4]

    Höcker H 2002 Pure Appl. Chem. 74 423

    [5]

    Boreyko J B, Chen C H 2009 Phys. Rev. Lett. 103 184501

    [6]

    Chu K H, Joung Y S, Enright R, Buie C R, Wang E N 2013 Appl. Phys. Lett. 102 151602

    [7]

    Choi C H, Kim C J 2006 Phys. Rev. Lett. 96 066001

    [8]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [9]

    Hu L, Wang L, Ding Y, Zhan S, Liu J 2016 Adv. Mater. 28 9210

    [10]

    Ordonez R C, Yashi C K H, Torres C M, Hafner N, Adleman J R, Acosta N M, Melcher J, Kamin N M, Garmire D 2016 IEEE Trans. Electron Devices 63 4018

    [11]

    Secor E B, Ahn B Y, Gao T Z, Lewis J A, Hersam M C 2015 Adv. Mater. 27 6683

    [12]

    Gozen B A, Tabatabai A, Ozdoganlar O B, Majidi C 2014 Adv. Mater. 26 5211

    [13]

    Dickey M D 2014 ACS Appl. Mater. Interfaces 6 18369

    [14]

    So J H, Thelen J, Qusba A, Hayes G J, Lazzi G, Dickey M D 2009 Adv. Funct. Mater. 19 3632

    [15]

    Paik J K, Kramer R K, Wood R J 2011 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2011) San Francisco, CA, USA, 25-30 September, 2011 p414

    [16]

    Zhang J, Yao Y Y, Sheng L, Liu J 2015 Adv. Mater. 27 2648

    [17]

    Fuentes-Cabrera M, Rhodes B H, Fowlkes J D, López-Benzanilla A, Terrones H, Simpson M L, Rack P D 2011 Phys. Rev. E 83 041603

    [18]

    Plimpton S 1995 J. Comput. Phys. 7 1

    [19]

    Baskes M I, Chen S P, Cherne F J 2002 Phys. Rev. B 66 104107

    [20]

    Lee T, Taylor C D, Lawson A C, Conradson S D, Chen S P, Caro A, Valone S M, Baskes M I 2014 Phys. Rev. B 89 174114

    [21]

    Ren W 2014 Langmuir 30 2879

    [22]

    de Coninck J, Blake T D 2008 Annu. Rev. Mater. Res. 38 1

    [23]

    Blake T D, Clarke A J, de Coninck J, de Ruijter M J, Belgium M 1997 Langmuir 13 2164

    [24]

    Bertrand E, Blake T D, de Coninck J 2009 Eur. Phys. J.: Spec. Top. 166 173

    [25]

    Li K, He H Y, Xu B, Pan B C 2009 J. Appl. Phys. 105 054308

    [26]

    NaidichJu J V, Chuvashov N 1983 J. Mater. Sci. 18 2071

    [27]

    Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 15012

  • [1]

    Worthington A M 1876 Proc. R. Soc. 25 261

    [2]

    Josserand C, Thoroddsen S T 2016 Annu. Rev. Fluid Mech. 48 365

    [3]

    Nishimoto S, Bhushan B 2013 RSC Adv. 3 671

    [4]

    Höcker H 2002 Pure Appl. Chem. 74 423

    [5]

    Boreyko J B, Chen C H 2009 Phys. Rev. Lett. 103 184501

    [6]

    Chu K H, Joung Y S, Enright R, Buie C R, Wang E N 2013 Appl. Phys. Lett. 102 151602

    [7]

    Choi C H, Kim C J 2006 Phys. Rev. Lett. 96 066001

    [8]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [9]

    Hu L, Wang L, Ding Y, Zhan S, Liu J 2016 Adv. Mater. 28 9210

    [10]

    Ordonez R C, Yashi C K H, Torres C M, Hafner N, Adleman J R, Acosta N M, Melcher J, Kamin N M, Garmire D 2016 IEEE Trans. Electron Devices 63 4018

    [11]

    Secor E B, Ahn B Y, Gao T Z, Lewis J A, Hersam M C 2015 Adv. Mater. 27 6683

    [12]

    Gozen B A, Tabatabai A, Ozdoganlar O B, Majidi C 2014 Adv. Mater. 26 5211

    [13]

    Dickey M D 2014 ACS Appl. Mater. Interfaces 6 18369

    [14]

    So J H, Thelen J, Qusba A, Hayes G J, Lazzi G, Dickey M D 2009 Adv. Funct. Mater. 19 3632

    [15]

    Paik J K, Kramer R K, Wood R J 2011 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2011) San Francisco, CA, USA, 25-30 September, 2011 p414

    [16]

    Zhang J, Yao Y Y, Sheng L, Liu J 2015 Adv. Mater. 27 2648

    [17]

    Fuentes-Cabrera M, Rhodes B H, Fowlkes J D, López-Benzanilla A, Terrones H, Simpson M L, Rack P D 2011 Phys. Rev. E 83 041603

    [18]

    Plimpton S 1995 J. Comput. Phys. 7 1

    [19]

    Baskes M I, Chen S P, Cherne F J 2002 Phys. Rev. B 66 104107

    [20]

    Lee T, Taylor C D, Lawson A C, Conradson S D, Chen S P, Caro A, Valone S M, Baskes M I 2014 Phys. Rev. B 89 174114

    [21]

    Ren W 2014 Langmuir 30 2879

    [22]

    de Coninck J, Blake T D 2008 Annu. Rev. Mater. Res. 38 1

    [23]

    Blake T D, Clarke A J, de Coninck J, de Ruijter M J, Belgium M 1997 Langmuir 13 2164

    [24]

    Bertrand E, Blake T D, de Coninck J 2009 Eur. Phys. J.: Spec. Top. 166 173

    [25]

    Li K, He H Y, Xu B, Pan B C 2009 J. Appl. Phys. 105 054308

    [26]

    NaidichJu J V, Chuvashov N 1983 J. Mater. Sci. 18 2071

    [27]

    Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 15012

  • [1] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响.  , 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [2] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为.  , 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [3] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟.  , 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [4] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性.  , 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [5] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理.  , 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [6] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟.  , 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [7] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟.  , 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [8] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究.  , 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [9] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究.  , 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [10] 董若宇, 曹鹏, 曹桂兴, 胡帼杰, 曹炳阳. 直流电场下水中石墨烯定向行为研究.  , 2017, 66(1): 014702. doi: 10.7498/aps.66.014702
    [11] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟.  , 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [12] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟.  , 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [13] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究.  , 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [14] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法.  , 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [15] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学.  , 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [16] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究.  , 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [17] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟.  , 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [18] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究.  , 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [19] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟.  , 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟.  , 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  9627
  • PDF下载量:  388
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-22
  • 修回日期:  2018-05-03
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map