Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High breakdown voltage lateral AlGaN/GaN high electron mobility transistor with p-GaN islands buried buffer layer for power applications

Zhang Li Lin Zhi-Yu Luo Jun Wang Shu-Long Zhang Jin-Cheng Hao Yue Dai Yang Chen Da-Zheng Guo Li-Xin

Citation:

High breakdown voltage lateral AlGaN/GaN high electron mobility transistor with p-GaN islands buried buffer layer for power applications

Zhang Li, Lin Zhi-Yu, Luo Jun, Wang Shu-Long, Zhang Jin-Cheng, Hao Yue, Dai Yang, Chen Da-Zheng, Guo Li-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The relatively low breakdown voltage (BV) seriously restricts the high power application of GaN based high electron mobility transistors (HEMTs). In this work, a novel AlGaN/GaN HEMT with buried p-n junctions is investigated to improve the breakdown characteristics by introducing six equidistant p-GaN islands buried buffer layer (PIBL) into the n-GaN epitaxial layer. The p-GaN islands act as reversed p-n junctions, which produces new electric field peaks at the edges of p-GaN islands, then realizing a much high breakdown voltage, and the reversed p-n junctions can help to suppress punch-through effect in buffer layer. Furthermore, the characteristics of proposed device are analyzed in detail from the aspects of off-state I-V characteristics, equipotential contour distribution, off-state electric field distribution, offstate carrier distribution and output characteristics. Simulated equipotential contour distribution shows that under the condition of high-voltage blocking state, multiple reverse p-n junctions introduced by the buried p-GaN islands produce five new electric field peaks, realizing a more uniform equipotential contour distribution especially at the edges of the buried p-islands. Then off-state electric field distribution demonstrates that p-GaN islands modulate the surface and bulk electric fields, which makes the voltage distributed in a larger area, therefore presenting a much higher breakdown voltage. It can be seen from off-state carrier distribution that the electrons in the buffer layer fully depleted in PIBL HEMT effectively suppress the buffer leakage current, thus alleviating the buffer-leakage-induced impact ionization leading to a high breakdown BV of over 1700 V with gate-to-drain length of 10μm, which is nearly 3 times larger than BV of 580 V in conventional AlGaN/GaN HEMT. Although, the introduction of p-type buried layer narrows the current path and causes an improved on-resistance, simulation shows that the specific on-resistance (Ron,sp) of PIBL HEMT is only about 1.47 mΩ·cm2, while the BV of the PIBL device is over 1700 V, and the obtained figure of merit (FOM=BV2/Ron,sp) reaches as high as 1966 MW·cm-2. The optimization of device structure reveals that when the distance between p-GaN layer and AlGaN layer (t) is 0.2μm, a thinner buried p-GaN island (tp) should help to realize a more significant electric field modulation, and PIBL HEMT can achieve a maximum BV of 1789 V with a tp=0.1μm. Compared with the traditional AlGaN/GaN HEMT, the PIBL HEMT reveals a higher breakdown voltage, meanwhile ensuring low Ron,sp, which makes this structure a promising candidate in the applications of high power electronic devices.
      Corresponding author: Lin Zhi-Yu, zylin@xidian.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2015M582610) and the National Natural Science Foundation of China (Grant Nos. 61404014, 61574023).
    [1]

    Zhang W, Li X, Zhang J, Jiang H, Xu X, Guo Z, He Y, Hao Y 2016 Phys. Status Solidi 213 2203

    [2]

    Yu X X, Ni J Y, Li Z H, Kong C, Zhou J J, Dong X, Pan L, Kong Y C, Chen T S 2014 Chin. Phys. Lett. 31 037201

    [3]

    Xie G, Edward X, Hashemi N, Zhang B, Fred Y F, Wai T N 2012 Chin. Phys. B 21 086105

    [4]

    Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Bi Z W, Xu S R, Xue J S, Ma X H, Wang C, Yang L A, Zhang J F, Kuang X W 2011 Chin. Phys. B 20 017203

    [5]

    Luo J, Zhao S H, Mi M H, Chen W W, Hou B, Zhang J C, Ma X H, Hao Y 2016 Chin. Phys. B 25 027303

    [6]

    Li X, Hove M V, Zhao M, Geens K, Lempinen V P, Sormunen J 2017 IEEE Electron. Dev. Lett. 38 99

    [7]

    Mi M H, Zhang K, Chen X, Zhao S L, Wang C, Zhang J C, Ma X H, Hao Y 2014 Chin. Phys. B 23 077304

    [8]

    Xie G, Edward X, Lee J, Hashemi N, Zhang B, Fu F Y 2012 IEEE Electron. Dev. Lett. 33 670

    [9]

    Zhang N Q, Keller S, Parish G, Heikman S, DenBaars S P, Mishra U K 2000 IEEE Electron. Dev. Lett. 21 421

    [10]

    Kim Y, Lim J, Kim M, Han M 2015 Phys. Status Solidi C 8 453

    [11]

    Deguchi T, Kamada A, Yamashita M, Tomita H, Arai M, Yamasaki K, Egawa T 2012 Electron. Lett. 48 109

    [12]

    Nanjo T, Kurahashi K, Imai A, Suzuki Y, Nakmura M, Suita M, Yagyu E 2014 Electron. Lett. 50 1577

    [13]

    Wang M, Chen K J 2010 IEEE Trans. Electron Dev. Lett. 57 1492

    [14]

    Boles T, Varmazis C, Carlson D, Palacios T, Turner G W, Molnar R J 2013 Phys. Status Solidi 10 844

    [15]

    Ha W J, Chhajed S, Oh S J, Hwang S Y, Kim J K, Lee J H, Kim K S 2012 Appl. Phys. Lett. 100 132104

    [16]

    Cheng J B, Zhang B, Sun W F, Shi L X, Li Z J 2014 Superlattice Microst. 76 288

    [17]

    Cheng J B, Zhang B, Li Z J 2008 Electron. Lett. 44 933

    [18]

    Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Parikh P 2004 IEEE Electron Dev. Lett. 25 117

    [19]

    Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T, Kuzuhara M 2003 IEEE Electron. Dev. Lett. 24 289

    [20]

    Mao W, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C, Hao Y 2016 Chin. Phys. B 25 127305

    [21]

    Cheng X, Sin J K O, Shen J, Huai Y J, Li R Z, Wu Y, Kang B W 2003 IEEE Trans. Electron. Dev. 50 2273

    [22]

    Dora Y, Chakraborty A, Heikman S, Mccarthy L, Keller S, Denbaars P 2006 IEEE Electron Dev. Lett. 27 529

    [23]

    Verzellesi G, Morassi L, Meneghesso G, Meneghini M, Zanoni E, Pozzovivo G 2014 IEEE Electron Dev. Lett. 35 443

  • [1]

    Zhang W, Li X, Zhang J, Jiang H, Xu X, Guo Z, He Y, Hao Y 2016 Phys. Status Solidi 213 2203

    [2]

    Yu X X, Ni J Y, Li Z H, Kong C, Zhou J J, Dong X, Pan L, Kong Y C, Chen T S 2014 Chin. Phys. Lett. 31 037201

    [3]

    Xie G, Edward X, Hashemi N, Zhang B, Fred Y F, Wai T N 2012 Chin. Phys. B 21 086105

    [4]

    Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Bi Z W, Xu S R, Xue J S, Ma X H, Wang C, Yang L A, Zhang J F, Kuang X W 2011 Chin. Phys. B 20 017203

    [5]

    Luo J, Zhao S H, Mi M H, Chen W W, Hou B, Zhang J C, Ma X H, Hao Y 2016 Chin. Phys. B 25 027303

    [6]

    Li X, Hove M V, Zhao M, Geens K, Lempinen V P, Sormunen J 2017 IEEE Electron. Dev. Lett. 38 99

    [7]

    Mi M H, Zhang K, Chen X, Zhao S L, Wang C, Zhang J C, Ma X H, Hao Y 2014 Chin. Phys. B 23 077304

    [8]

    Xie G, Edward X, Lee J, Hashemi N, Zhang B, Fu F Y 2012 IEEE Electron. Dev. Lett. 33 670

    [9]

    Zhang N Q, Keller S, Parish G, Heikman S, DenBaars S P, Mishra U K 2000 IEEE Electron. Dev. Lett. 21 421

    [10]

    Kim Y, Lim J, Kim M, Han M 2015 Phys. Status Solidi C 8 453

    [11]

    Deguchi T, Kamada A, Yamashita M, Tomita H, Arai M, Yamasaki K, Egawa T 2012 Electron. Lett. 48 109

    [12]

    Nanjo T, Kurahashi K, Imai A, Suzuki Y, Nakmura M, Suita M, Yagyu E 2014 Electron. Lett. 50 1577

    [13]

    Wang M, Chen K J 2010 IEEE Trans. Electron Dev. Lett. 57 1492

    [14]

    Boles T, Varmazis C, Carlson D, Palacios T, Turner G W, Molnar R J 2013 Phys. Status Solidi 10 844

    [15]

    Ha W J, Chhajed S, Oh S J, Hwang S Y, Kim J K, Lee J H, Kim K S 2012 Appl. Phys. Lett. 100 132104

    [16]

    Cheng J B, Zhang B, Sun W F, Shi L X, Li Z J 2014 Superlattice Microst. 76 288

    [17]

    Cheng J B, Zhang B, Li Z J 2008 Electron. Lett. 44 933

    [18]

    Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Parikh P 2004 IEEE Electron Dev. Lett. 25 117

    [19]

    Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T, Kuzuhara M 2003 IEEE Electron. Dev. Lett. 24 289

    [20]

    Mao W, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C, Hao Y 2016 Chin. Phys. B 25 127305

    [21]

    Cheng X, Sin J K O, Shen J, Huai Y J, Li R Z, Wu Y, Kang B W 2003 IEEE Trans. Electron. Dev. 50 2273

    [22]

    Dora Y, Chakraborty A, Heikman S, Mccarthy L, Keller S, Denbaars P 2006 IEEE Electron Dev. Lett. 27 529

    [23]

    Verzellesi G, Morassi L, Meneghesso G, Meneghini M, Zanoni E, Pozzovivo G 2014 IEEE Electron Dev. Lett. 35 443

  • [1] Wang Shuai, Ge Chen, Xu Zu-Yin, Cheng Ai-Qiang, Chen Dun-Jun. Modeling of temperature effect on DC characteristics of microwave GaN devices. Acta Physica Sinica, 2024, 73(17): 177101. doi: 10.7498/aps.73.20240765
    [2] Wu Peng, Li Ruo-Han, Zhang Tao, Zhang Jin-Cheng, Hao Yue. Interface-state suppression of AlGaN/GaN Schottky barrier diodes with post-anode-annealing treatment. Acta Physica Sinica, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [3] Dong Shi-Jian, Guo Hong-Xia, Ma Wu-Ying, Lv Ling, Pan Xiao-Yu, Lei Zhi-Feng, Yue Shao-Zhong, Hao Rui-Jing, Ju An-An, Zhong Xiang-Li, Ouyang Xiao-Ping. Ionizing radiation damage mechanism and biases correlation of AlGaN/GaN high electron mobility transistor devices. Acta Physica Sinica, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [4] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [5] Liu Jing, Wang Lin-Qian, Huang Zhong-Xiao. Current collapse suppression in AlGaN/GaN high electron mobility transistor with groove structure. Acta Physica Sinica, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [6] Tang Wen-Xin, Hao Rong-Hui, Chen Fu, Yu Guo-Hao, Zhang Bao-Shun. p-GaN hybrid anode AlGaN/GaN diode with 1000 V operation. Acta Physica Sinica, 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [7] Liu Yi, Yang Jia, Li Xing, Gu Wei, Gao Zhi-Peng. Resistance of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 under high voltage microsecond pulse induced breakdown. Acta Physica Sinica, 2017, 66(11): 117701. doi: 10.7498/aps.66.117701
    [8] Zhu Yan-Xu, Cao Wei-Wei, Xu Chen, Deng Ye, Zou De-Shu. Effect of different ohmic contact pattern on GaN HEMT electrical properties. Acta Physica Sinica, 2014, 63(11): 117302. doi: 10.7498/aps.63.117302
    [9] Duan Bao-Xing, Yang Yin-Tang. Breakdown voltage analysis for the new Al0.25 Ga0.75N/GaN HEMTs with the step AlGaN layers. Acta Physica Sinica, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [10] Ren Jian, Yan Da-Wei, Gu Xiao-Feng. Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [11] Duan Bao-Xing, Yang Yin-Tang, Kevin J. Chen. Breakdown voltage analysis for new Al0.25Ga0.75N/GaN HEMT with F ion implantation. Acta Physica Sinica, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [12] Duan Bao-Xing, Yang Yin-Tang, Kevin J. Chen. Breakdown vovtage analysis of new AlGaN/GaN high electron mobility transistor with the partial fixed charge in Si3N4 layer. Acta Physica Sinica, 2012, 61(24): 247302. doi: 10.7498/aps.61.247302
    [13] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [14] Wang Chong, Quan Si, Ma Xiao-Hua, Hao Yue, Zhang Jin-Cheng, Mao Wei. High temperature annealing of enhancement-mode AlGaN/GaN high-electron-mobility transistors. Acta Physica Sinica, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [15] Wang Chong, Quan Si, Zhang Jin-Feng, Hao Yue, Feng Qian, Chen Jun-Feng. Simulation and experimental investigation of recessed-gate AlGaN/GaN HEMT. Acta Physica Sinica, 2009, 58(3): 1966-1970. doi: 10.7498/aps.58.1966
    [16] Liu Lin-Jie, Yue Yuan-Zheng, Zhang Jin-Cheng, Ma Xiao-Hua, Dong Zuo-Dian, Hao Yue. Temperature characteristics of AlGaN/GaN MOS-HEMT with Al2O3 gate dielectric. Acta Physica Sinica, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [17] Zhang Jin-Cheng, Zheng Peng-Tian, Dong Zuo-Dian, Duan Huan-Tao, Ni Jin-Yu, Zhang Jin-Feng, Hao Yue. The effect of back-barrier layer on the carrier distribution in the AlGaN/GaN double-heterostructure. Acta Physica Sinica, 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [18] Wei Wei, Hao Yue, Feng Qian, Zhang Jin-Cheng, Zhang Jin-Feng. Geometrical optimization of AlGaN/GaN field-plate high electron mobility transistor. Acta Physica Sinica, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [19] Guo Liang-Liang, Feng Qian, Hao Yue, Yang Yan. Study of high breakdown-voltage AlGaN/GaN FP-HEMT. Acta Physica Sinica, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [20] Wang Chong, Feng Qian, Hao Yue, Wan Hui. Effect of pre-metallization processing and annealing on Ni/Au Schottky contacts in AlGaN/GaN heterostructures. Acta Physica Sinica, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
Metrics
  • Abstract views:  7398
  • PDF Downloads:  328
  • Cited By: 0
Publishing process
  • Received Date:  01 June 2017
  • Accepted Date:  16 August 2017
  • Published Online:  05 December 2017

/

返回文章
返回
Baidu
map