-
石墨烯-六方氮化硼面内异质结构因可调控石墨烯的能带结构而受到广泛关注. 本文介绍了在超高真空体系内, 利用两步生长法在两类对石墨烯分别有强和弱电子掺杂的基底, 即Rh(111)和Ir(111)上制备石墨烯-六方氮化硼单原子层异质结构. 通过扫描隧道显微镜及扫描隧道谱对这两种材料的形貌和电子结构进行研究发现: 石墨烯和六方氮化硼倾向于拼接生长形成单层的异质结构, 而非形成各自分立的畴区; 在拼接边界处, 石墨烯和六方氮化硼原子结构连续无缺陷; 拼接边界多为锯齿形型, 该实验结果与密度泛函理论计算结果相符合; 拼接界面处的石墨烯和六方氮化硼分别具有各自本征的电子结构, 六方氮化硼对石墨烯未产生电子掺杂效应.In-plane heterostructure of hexagonal boron nitride and graphene (h-BN-G) has become a research focus of graphene due to its predicted fascinating properties such as bandgap opening and magnetism, which hence has ignited the attempt of experimentally growing such in-plane two-dimensional (2D) hybrid materials. Many previous researches demonstrated the synthesis of such heterostructures on Cu foils via chemical vapor deposition (CVD) process. The obtained 2D hybrid materials would offer a possibility for fabricating atomically thin electronic devices. However, many fundamental issues are still unclear, including the in-plane atomic continuity, the edge type, and the electronic properties at the boundary of hybridized h-BN and graphene domain. To clarify these issues, we report the syntheses of h-BN-G monolayer heterostructures on strongly coupled Rh(111) substrate and weakly coupled Ir(111) substrate via a two-step growth process in an ultrahigh vacuum (UHV) system, respectively. With the aid of scanning tunneling microscopy (STM), it is revealed that graphene and h-BN could be linked together seamlessly on an atomic scale at the linking boundaries. More importantly, we find that the atomically sharp zigzag-type boundaries dominate the patching interface between graphene and h-BN as demonstrated by atomic-scale STM images. To understand the physical origin of the atomic linking of the h-BN-G heterostructures, we also perform density functional theory (DFT) calculations, including geometry optimizations and binding energy calculations for different kinds of linking interfaces. The calculated results reconfirm that graphene prefers to grow on the h-BN domain edges and form zigzag linking boundaries. Besides the atomic structures on the linking interfaces, the electronic characteristics are also of particular importance. It is worth noting that the substrates coupled strongly with graphene by π-d orbital hybridization (such as Rh(111) and Ru(0001)), lead to downward shift of graphene π-bands away from the Fermi level, or decay of the intrinsic electronic structure of graphene. In this regard, the influence of h-BN on the electronic property of graphene is hard to identify on such h-BN-G heterostructures. The weakly coupled Ir(111) is chosen to be a perfect substrate to investigate the interface electronic properties of h-BN-G heterostructure due to the absence of substrate electronic doping effect. Scanning tunneling spectroscopy studies indicate that the graphene and h-BN tend to exhibit their own intrinsic electronic features near the linking boundaries on Ir(111). Therefore, the present work offers a deep insight into the h-BN-G boundary structures and the effect of adlayer-substrate coupling both geometrically and electronically.
-
Keywords:
- graphene /
- hexagonal boron nitride /
- in-plane heterostructure /
- scanning tunneling microscopy
[1] Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A 2004 Science 306 666
[2] Novoselov K, Geim A K, Morozov S, Jiang D, Grigorieva M K I, Dubonos S, Firsov A 2005 Nature 438 197
[3] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
[4] da Rocha Martins J, Chacham H 2010 ACS Nano 5 385
[5] Shinde P P, Kumar V 2011 Phys. Rev. B 84 125401
[6] Zhao R, Wang J, Yang M, Liu Z, Liu Z 2012 J. Phys. Chem. C 116 21098
[7] Ramasubramaniam A, Naveh D 2011 Phys. Rev. B 84 075405
[8] Bhowmick S, Singh A K, Yakobson B I 2011 J. Phys. Chem. C 115 9889
[9] Jiang J W, Wang J S, Wang B S 2011 Appl. Phys. Lett. 99 043109
[10] Pruneda J 2010 Phys. Rev. B 81 161409
[11] Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z, Storr K, Balicas L 2010 Nat. Mater. 9 430
[12] Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P 2013 Nat. Nanotechn. 8 119
[13] Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Mller D A, Park J 2012 Nature 488 627
[14] Sutter P, Cortes R, Lahiri J, Sutter E 2012 Nano Lett. 12 4869
[15] Gao Y, Zhang Y, Chen P, Li Y, Liu M, Gao T, Ma D, Chen Y, Cheng Z, Qiu X, Duan W, Liu Z 2013 Nano Lett. 13 3439
[16] Lu J, Zhang K, Liu X F, Zhang H, Sum T C, Neto A H C, Loh K P 2013 Nat. Commun. 4 2681
[17] Liu M, Li Y, Chen P, Sun J, Ma D, Li Q, Gao T, Gao Y, Cheng Z, Qiu X, Fang Y, Liu Z 2014 Nano Lett. 14 6342
[18] Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217
[19] Dong G, Fourre é B, Tabak F C, Frenken J W 2010 Phys. Rev. Lett. 104 096102
[20] Voloshina E N, Dedkov Y S, Torbrgge S, Thissen A, Fonin M 2012 Appl. Phys. Lett. 100 241606
[21] Liu M, Gao Y, Zhang Y, Zhang Y, Ma D, Ji Q, Gao T, Chen Y, Liu Z 2013 Small 9 1359
[22] Sicot M, Leicht P, Zusan A, Bouvron S, Zander O, Weser M, Dedkov Y S, Horn K, Fonin M 2012 ACS Nano 6 151
[23] Zheng F, Zhou G, Liu Z, Wu J, Duan W, Gu B-L, Zhang S 2008 Phys. Rev. B 78 205415
[24] Nakamura J, Nitta T, Natori A 2005 Phys. Rev. B 72 205429
[25] Liu Y, Bhowmick S, Yakobson B I 2011 Nano Lett. 11 3113
[26] Sánchez-Barriga J, Varykhalov A, Scholz M, Rader O, Marchenko D, Rybkin A, Shikin A, Vescovo E 2010 Diam. Relat. Mater. 19 734
[27] Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175
[28] Usachov D, Fedorov A, Vilkov O, Adamchuk V, Yashina L, Bondarenko L, Saranin A, Grneis A, Vyalikh D 2012 Phys. Rev. B 86 155151
[29] Martoccia D, Willmott P, Brugger T, Björck M, Gnther S, Schleptz C, Cervellino A, Pauli S, Patterson B, Marchini S 2008 Phys. Rev. Lett. 101 126102
[30] Ma T, Ren W, Zhang X, Liu Z, Gao Y, Yin L C, Ma X L, Ding F, Cheng H M 2013 Proc. Natl. Acad. Sci. 110 20386
[31] Shu H, Chen X, Tao X, Ding F 2012 ACS Nano 6 3243
[32] Phark S-h, Borme J, Vanegas A L, Corbetta M, Sander D, Kirschner J 2012 Nanoscale Res. Lett. 7 1
[33] Drost R, Uppstu A, Schulz F, Hämäläinen S K, Ervasti M, Harju A, Liljeroth P 2014 Nano Lett. 14 5128
-
[1] Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A 2004 Science 306 666
[2] Novoselov K, Geim A K, Morozov S, Jiang D, Grigorieva M K I, Dubonos S, Firsov A 2005 Nature 438 197
[3] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
[4] da Rocha Martins J, Chacham H 2010 ACS Nano 5 385
[5] Shinde P P, Kumar V 2011 Phys. Rev. B 84 125401
[6] Zhao R, Wang J, Yang M, Liu Z, Liu Z 2012 J. Phys. Chem. C 116 21098
[7] Ramasubramaniam A, Naveh D 2011 Phys. Rev. B 84 075405
[8] Bhowmick S, Singh A K, Yakobson B I 2011 J. Phys. Chem. C 115 9889
[9] Jiang J W, Wang J S, Wang B S 2011 Appl. Phys. Lett. 99 043109
[10] Pruneda J 2010 Phys. Rev. B 81 161409
[11] Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z, Storr K, Balicas L 2010 Nat. Mater. 9 430
[12] Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P 2013 Nat. Nanotechn. 8 119
[13] Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Mller D A, Park J 2012 Nature 488 627
[14] Sutter P, Cortes R, Lahiri J, Sutter E 2012 Nano Lett. 12 4869
[15] Gao Y, Zhang Y, Chen P, Li Y, Liu M, Gao T, Ma D, Chen Y, Cheng Z, Qiu X, Duan W, Liu Z 2013 Nano Lett. 13 3439
[16] Lu J, Zhang K, Liu X F, Zhang H, Sum T C, Neto A H C, Loh K P 2013 Nat. Commun. 4 2681
[17] Liu M, Li Y, Chen P, Sun J, Ma D, Li Q, Gao T, Gao Y, Cheng Z, Qiu X, Fang Y, Liu Z 2014 Nano Lett. 14 6342
[18] Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217
[19] Dong G, Fourre é B, Tabak F C, Frenken J W 2010 Phys. Rev. Lett. 104 096102
[20] Voloshina E N, Dedkov Y S, Torbrgge S, Thissen A, Fonin M 2012 Appl. Phys. Lett. 100 241606
[21] Liu M, Gao Y, Zhang Y, Zhang Y, Ma D, Ji Q, Gao T, Chen Y, Liu Z 2013 Small 9 1359
[22] Sicot M, Leicht P, Zusan A, Bouvron S, Zander O, Weser M, Dedkov Y S, Horn K, Fonin M 2012 ACS Nano 6 151
[23] Zheng F, Zhou G, Liu Z, Wu J, Duan W, Gu B-L, Zhang S 2008 Phys. Rev. B 78 205415
[24] Nakamura J, Nitta T, Natori A 2005 Phys. Rev. B 72 205429
[25] Liu Y, Bhowmick S, Yakobson B I 2011 Nano Lett. 11 3113
[26] Sánchez-Barriga J, Varykhalov A, Scholz M, Rader O, Marchenko D, Rybkin A, Shikin A, Vescovo E 2010 Diam. Relat. Mater. 19 734
[27] Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175
[28] Usachov D, Fedorov A, Vilkov O, Adamchuk V, Yashina L, Bondarenko L, Saranin A, Grneis A, Vyalikh D 2012 Phys. Rev. B 86 155151
[29] Martoccia D, Willmott P, Brugger T, Björck M, Gnther S, Schleptz C, Cervellino A, Pauli S, Patterson B, Marchini S 2008 Phys. Rev. Lett. 101 126102
[30] Ma T, Ren W, Zhang X, Liu Z, Gao Y, Yin L C, Ma X L, Ding F, Cheng H M 2013 Proc. Natl. Acad. Sci. 110 20386
[31] Shu H, Chen X, Tao X, Ding F 2012 ACS Nano 6 3243
[32] Phark S-h, Borme J, Vanegas A L, Corbetta M, Sander D, Kirschner J 2012 Nanoscale Res. Lett. 7 1
[33] Drost R, Uppstu A, Schulz F, Hämäläinen S K, Ervasti M, Harju A, Liljeroth P 2014 Nano Lett. 14 5128
计量
- 文章访问数: 8750
- PDF下载量: 861
- 被引次数: 0