-
Graphene, as a typical representative of advanced materials, exhibits excellent electronical properties due to its unique and unusual crystal structure. The valence band and conduction band of pristine graphene meet at the corners of the Brillouin zone, leading to a half-metal material with zero bandgap. However, although the extraordinary electronical properties make graphene possess excellent electrical conductivity, it also restricts its applications in electronic devices, which usually needs an appropriate bandgap. Therefore, opening and tuning the bandgap of graphene has aroused great scientific interest. To date, many efforts have been made to open the bandgap of graphene, including defects, strain, doping, surface adsorptions, structure tunning, etc. Among these methods, graphene nanoribbon, the quasi-one-dimensional strips of graphene with finite width ( 10 nm) and high aspect ratios, possesses a band gap opening at the Dirac point due to the quantum confinement effects. Thus, graphene nanoribbon has been considered as one of the most promising candidates for the future electronic devices due to its unique electronic and magnetic properties. Specifically, the band gap of graphene nanoribbons is strongly dependent on the lateral size and the edge geometry, which has attracted tremendous attention. Furthermore, it has been reported that armchair graphene nanoribbons possess gaps inversely proportional to their width, and numerous efforts have been devoted to fabricating the graphene nanoribbons with different widths by top-down or bottom-up approaches. Moreover, based on the on-surface reaction, the bottom-up approach shows the capability of controlling the width and edge structures, and it is almost contamination-free processing, which is suitable to performing further characterizations. Ultra-high-vacuum scanning tunneling microscope is a valid tool to fabricate and characterize the graphene nanorribons, and it can also obtain the band structure information when combined with the scanning tunneling spectroscopy. Taking the advantage of the bottom-up synthetic technique, the nearly perfect graphene nanoribbons can be fabricated based on the organic molecule reaction on surface, which is a promising strategy to study the original electronic properties. To precisely tuning the band engineering of graphene nanoribbons, the researchers have adopted various effective methods, such as changing the widths and topological morphologies of graphene nanoribbons, doping the graphene nanoribbons with heteroatoms, fabricating the heterojunctions under a controlable condition. The precise control of graphene synthesis is therefore crucial for probing their fundamental physical properties. Here we highlight the methods of fabricating the graphene nanoribbons and the precise tuning of graphene bandgap structure in order to provide a feasible way to put them into application.
-
Keywords:
- graphene /
- nanoribbon /
- band engineering
[1] Novoselov K S, Gei A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351
[3] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi T Y, Hong B H 2009 Nature 457 706
[4] Balandin A A, Ghost S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
[5] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308
[6] Young R J, Kinloch I A, Gong L, Novoselov K S 2012 Compos. Sci. Technol. 72 1459
[7] Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229
[8] Joshi R K, Gomez H, Alvi F, Kumar A 2010 J. Phys. Chem. 114 6610
[9] Traversi F, Raillon C, Benameur S M, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A 2013 Nat. Nanotechnol. 8 939
[10] Choi W, Lahiri I, Seelaboyina R, Kang Y S 2010 Crit. Rev. Solid State 35 52
[11] Xu Y, Shi G 2011 J. Mater. Chem. 21 3311
[12] Zhu H W, Xu Z P, Xie D 2011 Graphene-Structure, Preparation Methods and Properties Characterization (Beijing: Tsinghua University Press) pp120-121 (in Chinese) [朱宏伟, 徐志平, 谢丹 2011 石墨烯: 结构、制备方法与性能表征 (北京: 清华大学出版社) 第120121页]
[13] Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[14] Ugeda M M, Brihuega I, Guinea F, Gmez-Rodrguez J M 2010 Phys. Rev. Lett. 104 096804
[15] Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanotechnol. 5 326
[16] Rutter G M, Crain J N, Guisinger N P, Li T, First P N, Stroscio J A 2007 Science 317 219
[17] Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804
[18] Yazyev O V, Louie S G 2010 Nat. Mater. 9 806
[19] Xu Y, Bai H, Lu G, Li C, Shi G 2008 J. Am. Chem. Soc. 130 5856
[20] Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435
[21] Mathkar A, Tozier D, Cox P, Ong P, Galande C, Balakrishnan K, Reddy Arava L M, Ajayan P M 2012 J. Phys. Chem. Lett. 3 986
[22] Dos Santos J M B L, Peres N M R, Neto A H C 2007 Phys. Rev. Lett. 99 256802
[23] Wu Z S, Ren W, Gao L, Liu B, Zhao J, Cheng H M 2010 Nano Res. 3 16
[24] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872
[25] Pan M, Girao E C, Jia X, Bhaviripudi S, Li Q, Kong J, Meunier V, Dresselhaus M S 2012 Nano Lett. 12 1928
[26] Bai J, Duan X, Huang Y 2009 Nano Lett. 9 2083
[27] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mllen K, Fasel R 2010 Nature 466 470
[28] Radocea A, Sun T, Vo T H, Sinitskii A, Aluru N R, Lyding J W 2017 Nano Lett. 17 170
[29] Tapaszt L, Dobrik G, Lambin P, Bir L P 2008 Nat. Nanotechnol. 3 397
[30] Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877
[31] Cano-Mrquez A G, Rodrguez-Macas F J, Campos-Delgado J, Espinosa-Gonzlez C G, Tristn-Lpez F, Ramrez-Gonzlez D, Cullen D A, Smith D J, Terrones M, Vega-Cant Y I 2009 Nano Lett. 9 1527
[32] Kosynkin D V, Lu W, Sinitskii A, Pera G, Sun Z, Tour J M 2011 ACS Nano 5 968
[33] Elas A L, Botello-Mndez A R, Meneses-Rodrguez D, Gonzlez V J, Ramrez-Gonzlez D, Ci L, Muoz-Sandoval E, Ajayan P M, Terrones H, Terrones M 2010 Nano Lett. 10 366
[34] Parashar U K, Bhandari S, Srivastava R K, Jariwala D, Srivastava A 2011 Nanoscale 3 3876
[35] Jiao L, Wang X, Diankov G, Wang H, Dai H 2010 Nat. Nanotechnol. 5 321
[36] Shinde D B, Debgupta J, Kushwaha A, Aslam M, Pillai V K 2011 J. Am. Chem. Soc. 133 4168
[37] Kumar P, Panchakarla L S, Rao C N R 2011 Nanoscale 3 2127
[38] Paiva M C, Xu W, Fernanda Proena M, Novais R M, Lgsgaard E, Besenbacher F 2010 Nano Lett. 10 1764
[39] Ma L, Wang J, Ding F 2013 Chem. Phys. Chem. 14 47
[40] Vitchev R, Malesevic A, Petrov R H, Kemps R, Mertens M, Vanhulsel A, Haesendonck C V 2010 Nanotechnology 21 095602
[41] Marchini S, Gnther S, Wintterlin J 2007 Phys. Rev. B 76 075429
[42] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30
[43] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312
[44] Sakaguchi H, Kawagoe Y, Hirano Y, Iruka T, Yano M, Nakae T 2014 Adv. Mater. 26 4134
[45] Tanaka K, Yamashita S, Yamabe H, Yamabe T 1987 Synthetic Met. 17 143
[46] Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
[47] Chen Z, Zhang W, Palma C A, Rizzini A L, Liu B, Abbas A, Richter N, Martini L, Wang X Y, Cavani N, Lu H, Mishra N, Coletti C, Berger R, Klappenberger F, Klui M, Candini A, Affronte M, Zhou C, Renzi V D, Pennino U, Barth J V, Rder H J, Narita A, Feng X, Mllen K 2016 J. Am. Chem. Soc. 138 15488
[48] Chen Z, Wang H I, Teyssandier J, Mali K S, Dumslaff T, Ivanov I, Zhang W, Ruffieux P, Fasel R, Rder H J, Turchinovich D, Feyter S D, Feng X, Klui M, Narita A, Bonn M, Mllen K 2017 J. Am. Chem. Soc. 139 3635
[49] Ma C, Xiao Z, Zhang H, Liang L, Huang J, Lu W, Sumpter B G, Hong K, Bernholc J, Li A P 2017 Nature Commun. 8 14815
[50] Vo T H, Perera U G, Shekhirev M, Mehdi P M, Kunkel D A, Lu H, Gruverman A, Sutter E, Cotlet M, Nykypanchuk D, Zahl P, Enders A, Sinitskii A, Sutter P 2015 Nano Lett. 15 5770
[51] Cai J, Pignedoli C A, Talirz L, Ruffieux P, Sde H, Liang L, Meunier V, Berger R, Li R, Feng X, Mllen K, Fasel R 2014 Nat. Nanotechnol. 9 896
[52] Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B L, Duan W 2008 J. Phys. Chem. C 112 13442
[53] Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Mllen K, Fuchs H, Chi L 2015 J. Am. Chem. Soc. 137 4022
[54] Kimouche A, Ervasti M M, Drost R, Halonen S, Harju A, Joensuu P M, Sainio J, Liljeroth P 2015 Nat. Commun. 6 10177
[55] Basagni A, Sedona F, Pignedoli C A, Cattelan M, Nicolas L, Casarin M, Sambi M 2015 J. Am. Chem. Soc. 137 1802
[56] Ruffieux P, Cai J, Plumb N C, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng X, Mllen K, Pignedoli C A, Fasel R 2012 ACS Nano 6 6930
[57] Talirz L, Sode H, Dumslaff T, Wang S, Sanchez-Valencia J R, Liu J, Shinde P, Pignedoli C A, Liang L, Meunier V, Plumb N C, Shi M, Feng X, Narita A, Mllen K, Fasel R, Ruffieux P 2017 ACS Nano 11 1380
[58] Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F 2013 ACS Nano 7 6123
[59] Abdurakhmanova N, Amsharov N, Stepanow S, Jansen M, Kern K, Amsharov K 2014 Carbon 77 1187
[60] Huang H, Wei D, Sun J, Wong S L, Feng Y P, Neto A H C, Wee A T S 2012 Sci. Rep. 2 983
[61] Dutta S, Wakabayashi K 2012 Sci. Rep. 2 519
[62] Yang L, Cohen M L, Louie S G 2008 Phys. Rev. Lett. 101 186401
[63] Yazyev O V 2013 Chem. Res. 46 2319
[64] Ruffieux P, Wang S, Yang B, Snchez-Snchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mllen K, Fasel R 2016 Nature 531 489
[65] Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 60 047102]
[66] Snchez-Snchez C, Dienel T, Deniz O, Ruffieux P, Berger R, Feng X, Mllen K, Fasel R 2016 ACS Nano 10 8006
[67] de Oteyza D G, Garca-Lekue A, Vilas-Varela M, Merino-Dez N, Carbonell-Sanrom E, Corso M, Vasseur G, Rogero C, Guitin E, Pascual J I, Ortega J E, Wakayama Y, Pea D 2016 ACS Nano 10 9000
[68] Bronner C, Stremlau S, Gille M, Braue F, Haase A, Hecht S, Tegeder P 2013 Angew. Chem. Int. Edit. 52 4422
[69] Biel B, Blase X, Triozon F, Roche S 2009 Phys. Rev. Lett. 102 096803
[70] Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A S, Spijker P, Meyer E 2015 Nat. Commun. 6 8089
[71] Nguyen G D, Toma F M, Cao T, Pedramrazi Z, Chen C, Rizzo D J, Joshi T, Bronner C, Chen Y C, Favaro M, Louie S G, Fischer F R, Crommie M F 2016 J. Phys. Chem. C 120 2684
[72] Carbonell-Sanrom E, Hieulle J, Vilas-Varela M, Brandimarte P, Iraola M, Barragn A, Li J, Abadia M, Corso M, Snchez-Portal D, Pea D, Ignacio Pascual J 2017 ACS Nano 11 7355
[73] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347
[74] Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏 2011 60 097103]
[75] Bennett P B, Pedramrazi Z, Madani A, Chen Y C, de Oteyza D G, Chen C, Fischer F R, Crommie M F, Bokor J 2013 Appl. Phys. Lett. 103 253114
[76] Llinas J P, Fairbrother A, Barin G, Shi W, Lee K, Wu S, Choi B Y, Braganza R, Lear J, Kau N, Choi W, Chen C, Pedramrazi Z, Dumslaff T, Narita A, Feng X, Mllen K, Fischer F, Zettl A, Ruffieux P, Yablonovitch E, Crommie M, Fasel R, Bokor J 2017 Nat. Commun. 8 633
[77] Smith S, Llins J P, Bokor J, Salahuddin S 2017 arXiv: 1703.05875 [cond-mat.mes-hall]
[78] Berahman M, Sheikhi M H 2015 Sensor. Actuat. B: Chem. 219 338
[79] Lu Y, Guo J 2010 Nano Res. 3 189
[80] Huang B, Liu F, Wu J, Gu B L, Duan W 2008 Phys. Rev. B 77 153411
[81] Guo J, Gunlycke D, White C T 2008 Appl. Phys. Lett. 92 163109
-
[1] Novoselov K S, Gei A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351
[3] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi T Y, Hong B H 2009 Nature 457 706
[4] Balandin A A, Ghost S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
[5] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308
[6] Young R J, Kinloch I A, Gong L, Novoselov K S 2012 Compos. Sci. Technol. 72 1459
[7] Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229
[8] Joshi R K, Gomez H, Alvi F, Kumar A 2010 J. Phys. Chem. 114 6610
[9] Traversi F, Raillon C, Benameur S M, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A 2013 Nat. Nanotechnol. 8 939
[10] Choi W, Lahiri I, Seelaboyina R, Kang Y S 2010 Crit. Rev. Solid State 35 52
[11] Xu Y, Shi G 2011 J. Mater. Chem. 21 3311
[12] Zhu H W, Xu Z P, Xie D 2011 Graphene-Structure, Preparation Methods and Properties Characterization (Beijing: Tsinghua University Press) pp120-121 (in Chinese) [朱宏伟, 徐志平, 谢丹 2011 石墨烯: 结构、制备方法与性能表征 (北京: 清华大学出版社) 第120121页]
[13] Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[14] Ugeda M M, Brihuega I, Guinea F, Gmez-Rodrguez J M 2010 Phys. Rev. Lett. 104 096804
[15] Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanotechnol. 5 326
[16] Rutter G M, Crain J N, Guisinger N P, Li T, First P N, Stroscio J A 2007 Science 317 219
[17] Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804
[18] Yazyev O V, Louie S G 2010 Nat. Mater. 9 806
[19] Xu Y, Bai H, Lu G, Li C, Shi G 2008 J. Am. Chem. Soc. 130 5856
[20] Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435
[21] Mathkar A, Tozier D, Cox P, Ong P, Galande C, Balakrishnan K, Reddy Arava L M, Ajayan P M 2012 J. Phys. Chem. Lett. 3 986
[22] Dos Santos J M B L, Peres N M R, Neto A H C 2007 Phys. Rev. Lett. 99 256802
[23] Wu Z S, Ren W, Gao L, Liu B, Zhao J, Cheng H M 2010 Nano Res. 3 16
[24] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872
[25] Pan M, Girao E C, Jia X, Bhaviripudi S, Li Q, Kong J, Meunier V, Dresselhaus M S 2012 Nano Lett. 12 1928
[26] Bai J, Duan X, Huang Y 2009 Nano Lett. 9 2083
[27] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mllen K, Fasel R 2010 Nature 466 470
[28] Radocea A, Sun T, Vo T H, Sinitskii A, Aluru N R, Lyding J W 2017 Nano Lett. 17 170
[29] Tapaszt L, Dobrik G, Lambin P, Bir L P 2008 Nat. Nanotechnol. 3 397
[30] Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877
[31] Cano-Mrquez A G, Rodrguez-Macas F J, Campos-Delgado J, Espinosa-Gonzlez C G, Tristn-Lpez F, Ramrez-Gonzlez D, Cullen D A, Smith D J, Terrones M, Vega-Cant Y I 2009 Nano Lett. 9 1527
[32] Kosynkin D V, Lu W, Sinitskii A, Pera G, Sun Z, Tour J M 2011 ACS Nano 5 968
[33] Elas A L, Botello-Mndez A R, Meneses-Rodrguez D, Gonzlez V J, Ramrez-Gonzlez D, Ci L, Muoz-Sandoval E, Ajayan P M, Terrones H, Terrones M 2010 Nano Lett. 10 366
[34] Parashar U K, Bhandari S, Srivastava R K, Jariwala D, Srivastava A 2011 Nanoscale 3 3876
[35] Jiao L, Wang X, Diankov G, Wang H, Dai H 2010 Nat. Nanotechnol. 5 321
[36] Shinde D B, Debgupta J, Kushwaha A, Aslam M, Pillai V K 2011 J. Am. Chem. Soc. 133 4168
[37] Kumar P, Panchakarla L S, Rao C N R 2011 Nanoscale 3 2127
[38] Paiva M C, Xu W, Fernanda Proena M, Novais R M, Lgsgaard E, Besenbacher F 2010 Nano Lett. 10 1764
[39] Ma L, Wang J, Ding F 2013 Chem. Phys. Chem. 14 47
[40] Vitchev R, Malesevic A, Petrov R H, Kemps R, Mertens M, Vanhulsel A, Haesendonck C V 2010 Nanotechnology 21 095602
[41] Marchini S, Gnther S, Wintterlin J 2007 Phys. Rev. B 76 075429
[42] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30
[43] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312
[44] Sakaguchi H, Kawagoe Y, Hirano Y, Iruka T, Yano M, Nakae T 2014 Adv. Mater. 26 4134
[45] Tanaka K, Yamashita S, Yamabe H, Yamabe T 1987 Synthetic Met. 17 143
[46] Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
[47] Chen Z, Zhang W, Palma C A, Rizzini A L, Liu B, Abbas A, Richter N, Martini L, Wang X Y, Cavani N, Lu H, Mishra N, Coletti C, Berger R, Klappenberger F, Klui M, Candini A, Affronte M, Zhou C, Renzi V D, Pennino U, Barth J V, Rder H J, Narita A, Feng X, Mllen K 2016 J. Am. Chem. Soc. 138 15488
[48] Chen Z, Wang H I, Teyssandier J, Mali K S, Dumslaff T, Ivanov I, Zhang W, Ruffieux P, Fasel R, Rder H J, Turchinovich D, Feyter S D, Feng X, Klui M, Narita A, Bonn M, Mllen K 2017 J. Am. Chem. Soc. 139 3635
[49] Ma C, Xiao Z, Zhang H, Liang L, Huang J, Lu W, Sumpter B G, Hong K, Bernholc J, Li A P 2017 Nature Commun. 8 14815
[50] Vo T H, Perera U G, Shekhirev M, Mehdi P M, Kunkel D A, Lu H, Gruverman A, Sutter E, Cotlet M, Nykypanchuk D, Zahl P, Enders A, Sinitskii A, Sutter P 2015 Nano Lett. 15 5770
[51] Cai J, Pignedoli C A, Talirz L, Ruffieux P, Sde H, Liang L, Meunier V, Berger R, Li R, Feng X, Mllen K, Fasel R 2014 Nat. Nanotechnol. 9 896
[52] Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B L, Duan W 2008 J. Phys. Chem. C 112 13442
[53] Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Mllen K, Fuchs H, Chi L 2015 J. Am. Chem. Soc. 137 4022
[54] Kimouche A, Ervasti M M, Drost R, Halonen S, Harju A, Joensuu P M, Sainio J, Liljeroth P 2015 Nat. Commun. 6 10177
[55] Basagni A, Sedona F, Pignedoli C A, Cattelan M, Nicolas L, Casarin M, Sambi M 2015 J. Am. Chem. Soc. 137 1802
[56] Ruffieux P, Cai J, Plumb N C, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng X, Mllen K, Pignedoli C A, Fasel R 2012 ACS Nano 6 6930
[57] Talirz L, Sode H, Dumslaff T, Wang S, Sanchez-Valencia J R, Liu J, Shinde P, Pignedoli C A, Liang L, Meunier V, Plumb N C, Shi M, Feng X, Narita A, Mllen K, Fasel R, Ruffieux P 2017 ACS Nano 11 1380
[58] Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F 2013 ACS Nano 7 6123
[59] Abdurakhmanova N, Amsharov N, Stepanow S, Jansen M, Kern K, Amsharov K 2014 Carbon 77 1187
[60] Huang H, Wei D, Sun J, Wong S L, Feng Y P, Neto A H C, Wee A T S 2012 Sci. Rep. 2 983
[61] Dutta S, Wakabayashi K 2012 Sci. Rep. 2 519
[62] Yang L, Cohen M L, Louie S G 2008 Phys. Rev. Lett. 101 186401
[63] Yazyev O V 2013 Chem. Res. 46 2319
[64] Ruffieux P, Wang S, Yang B, Snchez-Snchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mllen K, Fasel R 2016 Nature 531 489
[65] Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 60 047102]
[66] Snchez-Snchez C, Dienel T, Deniz O, Ruffieux P, Berger R, Feng X, Mllen K, Fasel R 2016 ACS Nano 10 8006
[67] de Oteyza D G, Garca-Lekue A, Vilas-Varela M, Merino-Dez N, Carbonell-Sanrom E, Corso M, Vasseur G, Rogero C, Guitin E, Pascual J I, Ortega J E, Wakayama Y, Pea D 2016 ACS Nano 10 9000
[68] Bronner C, Stremlau S, Gille M, Braue F, Haase A, Hecht S, Tegeder P 2013 Angew. Chem. Int. Edit. 52 4422
[69] Biel B, Blase X, Triozon F, Roche S 2009 Phys. Rev. Lett. 102 096803
[70] Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A S, Spijker P, Meyer E 2015 Nat. Commun. 6 8089
[71] Nguyen G D, Toma F M, Cao T, Pedramrazi Z, Chen C, Rizzo D J, Joshi T, Bronner C, Chen Y C, Favaro M, Louie S G, Fischer F R, Crommie M F 2016 J. Phys. Chem. C 120 2684
[72] Carbonell-Sanrom E, Hieulle J, Vilas-Varela M, Brandimarte P, Iraola M, Barragn A, Li J, Abadia M, Corso M, Snchez-Portal D, Pea D, Ignacio Pascual J 2017 ACS Nano 11 7355
[73] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347
[74] Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏 2011 60 097103]
[75] Bennett P B, Pedramrazi Z, Madani A, Chen Y C, de Oteyza D G, Chen C, Fischer F R, Crommie M F, Bokor J 2013 Appl. Phys. Lett. 103 253114
[76] Llinas J P, Fairbrother A, Barin G, Shi W, Lee K, Wu S, Choi B Y, Braganza R, Lear J, Kau N, Choi W, Chen C, Pedramrazi Z, Dumslaff T, Narita A, Feng X, Mllen K, Fischer F, Zettl A, Ruffieux P, Yablonovitch E, Crommie M, Fasel R, Bokor J 2017 Nat. Commun. 8 633
[77] Smith S, Llins J P, Bokor J, Salahuddin S 2017 arXiv: 1703.05875 [cond-mat.mes-hall]
[78] Berahman M, Sheikhi M H 2015 Sensor. Actuat. B: Chem. 219 338
[79] Lu Y, Guo J 2010 Nano Res. 3 189
[80] Huang B, Liu F, Wu J, Gu B L, Duan W 2008 Phys. Rev. B 77 153411
[81] Guo J, Gunlycke D, White C T 2008 Appl. Phys. Lett. 92 163109
Catalog
Metrics
- Abstract views: 8925
- PDF Downloads: 620
- Cited By: 0