Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mode characteristic analysis of optical waveguides based on graphene-coated elliptical dielectric nanowire

Cheng Xin Xue Wen-Rui Wei Zhuang-Zhi Dong Hui-Ying Li Chang-Yong

Citation:

Mode characteristic analysis of optical waveguides based on graphene-coated elliptical dielectric nanowire

Cheng Xin, Xue Wen-Rui, Wei Zhuang-Zhi, Dong Hui-Ying, Li Chang-Yong
PDF
HTML
Get Citation
  • In this paper, an elliptical dielectric graphene-coated nanowire optical waveguide is designed. In the elliptical cylinder coordinate system, the dispersion equation is obtained by using the separation variable method with the Mathieu functions. The effective refractive indexes and the field distributions are obtained from the dispersion equation by using the numerical method, then the propagation lengths are obtained. The influence of the operating wavelength, structure parameters and the Fermi energy of graphene on the mode characteristics are investigated. What is more, the figure of merit of the first five modes are calculated too. The influence of the operating wavelength and the graphene Fermi energy on the mode characteristics of circular nanowires and that of elliptical nanowires are compared. The results show that as the operating wavelength increases from 4.3 ${\text{μ}}{\rm{m}}$ to 8.8 ${\text{μ}}{\rm{m}}$, the real part of the effective refractive index decreases monotonically, the propagation lengths of the fundamental mode and the 1st order modes increase, and the 2nd order modes first increase and then decrease. When changing the elliptical nanowire structure parameters—the length of semi-major axis and semi-minor axis, there are slight influence on the mode characteristics of the fundamental mode and the 1st order modes, but greater influence on those of the 2nd order modes. As the Fermi energy of graphene increases from 0.45 eV to 0.72 eV, in the first five modes, the real part of the effective refractive index decreases, the propagation lengths of the fundamental mode and the 1st order modes increase, the propagation lengths of the 2nd order modes decrease. In addition, the propagation length approaches to 2 ${\text{μ}}{\rm{m}}$ approximately. When the semi-minor axis b = 100 nm and ​${E_{\rm F}} \;{\rm{ = 0}}{\rm{.5}}\;{\rm{eV}}$, the curves of the circular nanowire (a = 100 nm) and the elliptical nanowire (a = 140 nm), the real part of the effective refractive index and propagation length with the operating wavelength and the Fermi energy of graphene are compared. Then, the advantages of elliptical nanowire over the circular nanowire are verified. The results of the separation variable method are in good agreement with the results of the finite element method. This work can provide a theoretical basis for the design, fabrication and application of optical waveguides based on graphene-coated elliptical dielectric nanowires.
      Corresponding author: Xue Wen-Rui, wrxue@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61378039, 61575115) and the National Science Fund for Talent Training in Basic Science of the National Natural Science Foundation of China (Grant No. J1103210).
    [1]

    Gao Y X, Ren G B, Zhu B F, Liu H Q, Lian Y D, Jian S S 2014 Opt. Express 22 24322Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Grigorieva I V, Dubonos S V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [4]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nature Nanotechnol. 6 630Google Scholar

    [5]

    Wang J C, Song C, Hang J, Hu Z D, Zhang F 2017 Opt. Express 25 23880Google Scholar

    [6]

    Gao Y X, Ren G B, Zhu B F, Liu H Q, Wang J, Jian S S 2014 Opt. Lett. 39 5909Google Scholar

    [7]

    Jablan M, Buljan M, Soljačić M 2009 Phys. Rev. B 80 245435Google Scholar

    [8]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H, de García Abajo F J 2012 ACS Nano 6 431Google Scholar

    [9]

    Liu P H, Zhang X Z, Ma Z H, Cai W, Wang L, Xu J J 2013 Opt. Express 21 32431

    [10]

    Xing R, Jian S S 2016 IEEE Photonics Technol. Lett. 28 2649Google Scholar

    [11]

    Zhou X T, Zhang T, Chen L, Hong W, Li X 2014 J. Lightwave Technol. 32 3597

    [12]

    Liu Y, Zhong R B, Ding H, Liu S G 2017 Eur. Phys. J. D 71 83Google Scholar

    [13]

    He X Q, Ning T G, Lu S H, Zheng J J, Li J, Li R J, Pei L 2018 Opt. Express 26 10109Google Scholar

    [14]

    Xing R, Jian S S 2017 IEEE Photonics Technol. Lett. 29 1643Google Scholar

    [15]

    Liu J P, Zhai X, Xie F, Wang L L, Xia S X, Liu H J, Luo X, Shang X J 2017 J. Lightwave Technol. 35 1971Google Scholar

    [16]

    Xing R, Jian S S 2017 IEEE Photonics Technol. Lett. 29 967Google Scholar

    [17]

    Zhu B F, Ren G B, Yang Y, Gao Y X 2015 Plasmonics 10 839Google Scholar

    [18]

    彭艳玲, 薛文瑞, 卫壮志, 李昌勇 2018 光学学报 38 0223002

    Peng Y L, Xue W R, Wei Z Z, Li C Y 2018 Acta Opt. Sin. 38 0223002

    [19]

    彭艳玲, 薛文瑞, 卫壮志, 李昌勇 2018 67 038102Google Scholar

    Peng Y L, Xue W R, Wei Z Z, Li C Y 2018 Acta Phys. Sin. 67 038102Google Scholar

    [20]

    Xing R, Jian S S 2016 IEEE Photonics Techol. Lett. 28 2779Google Scholar

    [21]

    卫壮志, 薛文瑞, 程鑫, 李昌勇 2018 67 108101Google Scholar

    Wei Z Z, Xue W R, Cheng X, Li C Y 2018 Acta Phys. Sin. 67 108101Google Scholar

    [22]

    Hossein M B, Alexander B Y 2015 J. Phys. Condens. Matter 27 185304Google Scholar

    [23]

    陈卫东, 刘丰 2009 电子学报 37 1624Google Scholar

    Chen W D, Liu F 2009 Acta Elec. Sin. 37 1624Google Scholar

    [24]

    Zhao J J, Tang M, Oh K H, Feng Z H, Zhao K, Liao R L, Fu S N, Shum P P, Liu D M 2017 Photon. Res. 8 261

    [25]

    Nejad R M, Tavakoli F, Wang L X, Guan X, Larochelle S, Rusch L A 2018 J. Lightwave Technol. 36 3794Google Scholar

    [26]

    Lee M S, Park B G, Cho I H, Lee J H 2012 IEEE Electron Device Lett. 33 1613Google Scholar

    [27]

    de Abajo F J G 2010 Rev. Mod. Phys. 82 209Google Scholar

    [28]

    翟利, 薛文瑞, 杨荣草, 韩丽萍 2015 光学学报 35 1123002

    Zhai L, Xue W R, Yang R C, Han L P 2015 Acta Opt. Sin. 35 1123002

    [29]

    Nikitin A Y, Guinea F, García-Vidal F J, Martín-Moreno L 2011 Phys.Rev. B 84 195446Google Scholar

    [30]

    Yeh C 1962 J. Appl. Phys. 33 3235Google Scholar

    [31]

    D Erricolo, G Carluccio 2013 ACM Trans. Math. Soft. 40 8

    [32]

    He S L, Zhang X Z, He Y R 2013 Opt. Express 21 30664Google Scholar

    [33]

    Ye L F, Sui K H, Liu Y H, Zhang M, Liu Q H 2018 Opt. Express 26 15935Google Scholar

    [34]

    Ye S, Wang Z X, Sun C R, Dong C B, Wei B Z, Wu B L, Jian S S 2018 Opt. Express 26 23854Google Scholar

    [35]

    Chen M, Sheng P C, Sun W, Cai J J 2016 Opt.Commun. 376 41Google Scholar

  • 图 1  涂覆石墨烯的椭圆形电介质纳米线光波导的横截面示意图

    Figure 1.  Cross section of the optical waveguide based on graphene-coated elliptical dielectric nanowire.

    图 2  a = 110 nm, b = 80 nm, ${E_{\rm{F}}}= 0{\rm{.5\; eV}}$$\lambda = 7\;{\text{μ}}{\rm{m}}$的情况下, 前五个模式对应的z方向电场分量${E_z}$(a)—(e)与电场强度$\left| E \right|$分布图(f)—(j)

    Figure 2.  The z direction electric field component ${E_z}$ (a)—(e)and electric field intensity $\left| E \right|$(f)—(j) corresponding to the first 5 modes with a = 110 nm, b = 80 nm, ${E_{\rm{F}}} = 0{\rm{.5\; eV}}$ and $\lambda = 7\;{\text{μ}}{\rm{m}}$.

    图 3  a = 110 nm, b = 80 nm和${E_{\rm{F}}} = 0{\rm{.5\; eV}}$的情况下, 有效折射率实部(a), 传播长度(b)和品质因数(c)与波长的关系

    Figure 3.  Dependence of the real part of the effective refractive index (a), propagation length (b) and FOM (c) on the wavelength with a = 110 nm, b = 80 nm and${E_{\rm{F}}} = 0{\rm{.5\; eV}}$.

    图 4  a = 110 nm, b = 80 nm和${E_{\rm{F}}} = 0{\rm{.5 \;eV}}$的情况下, 不同波长时Mode 5的电场强度$\left| E \right|$分布图 (a)$\lambda = 5{\rm{.0}}\;{\text{μ}}{\rm{m}}$; (b)$\lambda = {\rm{7}}{\rm{.5}}\;{\text{μ}}{\rm{m}}$; (c)$\lambda = {\rm{8}}{\rm{.5}}\;{\text{μ}}{\rm{m}}$

    Figure 4.  The distribution of the electric field intensity $\left| E \right|$ of the Mode 5 with different wavelength when a = 110 nm, b = 80 nm and ${E_{\rm{F}}} = 0{\rm{.5 \;eV}}$: (a)$\lambda = 5{\rm{.0}}\;{\text{μ}}{\rm{m}}$; (b)$\lambda = {\rm{7}}{\rm{.5}}\;{\text{μ}}{\rm{m}}$; (c)$\lambda = {\rm{8}}{\rm{.5}}\;{\text{μ}}{\rm{m}}$.

    图 5  b = 90 nm, ${E_{\rm{F}}} = 0{\rm{.5 \;eV}}$$\lambda = 7\;{\text{μ}}{\rm{m}}$的情况下, 有效折射率实部(a), 传播长度(b)和品质因数(c)与半长轴a的关系

    Figure 5.  The real part of the effective refractive index (a), propagation length (b) and FOM (c) as a function of semi-major axis when b = 90 nm, ${E_{\rm{F}}}= 0{\rm{.5 \;eV}}$and $\lambda = 7\;{\text{μ}}{\rm{m}}$.

    图 6  b = 80 nm, ${E_{\rm{F}}} = 0{\rm{.5 \;eV}}$$\lambda = 7\;{\text{μ}}{\rm{m}}$的情况下, 半长轴长度取不同值时Mode 5的电场强度$\left| E \right|$分布图 (a) a = 100 nm; (b) a = 120 nm; (c) a = 140 nm

    Figure 6.  The distribution of the electric field intensity $\left| E \right|$ of the Mode 5 with different length of semi-major axis when b = 80 nm, ${E_{\rm{F}}}= 0{\rm{.5 \;eV}}$ and $\lambda = 7\;{\text{μ}}{\rm{m}}$: (a) a = 100 nm; (b) a = 120 nm; (c) a = 140 nm.

    图 7  a = 110 nm, ${E_{\rm{F}}} = 0{\rm{.5 \;eV}}$$\lambda = 7\;{\text{μ}}{\rm{m}}$时, 有效折射率实部(a), 传播长度(b)和品质因数(c)与半短轴b的关系

    Figure 7.  The real part of the effective refractive index (a), propagation length (b) and FOM (c) as a function of semi-minor axis when a = 110 nm, ${E_{\rm{F}}} = 0{\rm{.5 \;eV}}$and ${\rm{7}}\;{\text{μ}}{\rm{m}}$.

    图 8  a = 110 nm, ${E_{\rm{F}}} = 0{\rm{.5 \;eV}}$$\lambda = 7\;{\text{μ}}{\rm{m}}$的情况下, 半短轴长度取不同值时Mode 5的电场强度$\left| E \right|$分布图 (a) b = 65 nm; (b) b = 85 nm; (c) b = 105 nm.

    Figure 8.  The distribution of the electric field intensity $\left| E \right|$ of the Mode 5 with different length of semi-minor axis when a = 110 nm, ${E_{\rm F}}= 0{\rm{.5 \;eV}}$ and $\lambda = 7\;{\text{μ}}{\rm{m}}$: (a) b = 65 nm; (b) b = 85 nm; (c) b = 105 nm.

    图 9  a = 110 nm, b = 80 nm和$\lambda = 7\;{\text{μ}}{\rm{m}}$时, 有效折射率实部(a), 传播长度(b)和品质因数(c)与费米能的关系

    Figure 9.  The real part of the effective refractive index (a), propagation length (b) and FOM (c) as a function of Fermi energy when a = 110 nm, b = 80 nm and $\lambda = 7\;{\text{μ}}{\rm{m}}$.

    图 10  a = 110 nm, b = 80 nm和$\lambda = 7\;{\text{μ}}{\rm{m}}$的情况下, 费米能取不同值时Mode 5的电场强度$\left| E \right|$分布图 (a) ${E_{\rm{F}}} = 0{\rm{.5 \;eV}}$; (b) ${E_{\rm F}} = 0{\rm{.63 \;eV}}$; (c) ${E_{\rm F}} = 0{\rm{.72 \;eV}}$

    Figure 10.  The distribution of the electric field intensity $\left| E \right|$ of the Mode 5 with different values of Fermi energy when a = 110 nm, b = 80 nm, $\lambda = 7\;{\text{μ}}{\rm{m}}$: (a) ${E_{\rm F}} = 0{\rm{.5 \;eV}}$; (b) ${E_{\rm F}} = {\rm{0}}{\rm{.63 \;eV}}$; (c) ${E_{\rm F}} = {\rm{0}}{\rm{.72 \;eV}}$.

    图 11  ${E_{\rm{F}}}= 0{\rm{.5 \;eV}}$b = 100 nm的条件下, 当a = 100和140 nm时, Mode 5 的有效折射率实部(a)和传播长度(b)随波长变化的曲线图

    Figure 11.  When a = 100 and 140 nm, the real part of the effective refractive index (a) , propagation length (b) as a function of wavelength at ${E_{\rm{F}}} = 0{\rm{.5 \;eV}}$ and b = 100 nm.

    图 12  b = 100 nm和$\lambda = 7\;{\text{μ}}{\rm{m}}$的条件下, 当a = 100和140 nm时, Mode 5 的有效折射率实部(a)和传播长度(b)随石墨烯费米能变化的曲线图

    Figure 12.  When a = 100 and 140 nm, the real part of the effective refractive index (a), propagation length (b) as a function of graphene Fermi energy at b = 100 nm and $\lambda = 7\;{\text{μ}}{\rm{m}}$.

    Baidu
  • [1]

    Gao Y X, Ren G B, Zhu B F, Liu H Q, Lian Y D, Jian S S 2014 Opt. Express 22 24322Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Grigorieva I V, Dubonos S V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [4]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nature Nanotechnol. 6 630Google Scholar

    [5]

    Wang J C, Song C, Hang J, Hu Z D, Zhang F 2017 Opt. Express 25 23880Google Scholar

    [6]

    Gao Y X, Ren G B, Zhu B F, Liu H Q, Wang J, Jian S S 2014 Opt. Lett. 39 5909Google Scholar

    [7]

    Jablan M, Buljan M, Soljačić M 2009 Phys. Rev. B 80 245435Google Scholar

    [8]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H, de García Abajo F J 2012 ACS Nano 6 431Google Scholar

    [9]

    Liu P H, Zhang X Z, Ma Z H, Cai W, Wang L, Xu J J 2013 Opt. Express 21 32431

    [10]

    Xing R, Jian S S 2016 IEEE Photonics Technol. Lett. 28 2649Google Scholar

    [11]

    Zhou X T, Zhang T, Chen L, Hong W, Li X 2014 J. Lightwave Technol. 32 3597

    [12]

    Liu Y, Zhong R B, Ding H, Liu S G 2017 Eur. Phys. J. D 71 83Google Scholar

    [13]

    He X Q, Ning T G, Lu S H, Zheng J J, Li J, Li R J, Pei L 2018 Opt. Express 26 10109Google Scholar

    [14]

    Xing R, Jian S S 2017 IEEE Photonics Technol. Lett. 29 1643Google Scholar

    [15]

    Liu J P, Zhai X, Xie F, Wang L L, Xia S X, Liu H J, Luo X, Shang X J 2017 J. Lightwave Technol. 35 1971Google Scholar

    [16]

    Xing R, Jian S S 2017 IEEE Photonics Technol. Lett. 29 967Google Scholar

    [17]

    Zhu B F, Ren G B, Yang Y, Gao Y X 2015 Plasmonics 10 839Google Scholar

    [18]

    彭艳玲, 薛文瑞, 卫壮志, 李昌勇 2018 光学学报 38 0223002

    Peng Y L, Xue W R, Wei Z Z, Li C Y 2018 Acta Opt. Sin. 38 0223002

    [19]

    彭艳玲, 薛文瑞, 卫壮志, 李昌勇 2018 67 038102Google Scholar

    Peng Y L, Xue W R, Wei Z Z, Li C Y 2018 Acta Phys. Sin. 67 038102Google Scholar

    [20]

    Xing R, Jian S S 2016 IEEE Photonics Techol. Lett. 28 2779Google Scholar

    [21]

    卫壮志, 薛文瑞, 程鑫, 李昌勇 2018 67 108101Google Scholar

    Wei Z Z, Xue W R, Cheng X, Li C Y 2018 Acta Phys. Sin. 67 108101Google Scholar

    [22]

    Hossein M B, Alexander B Y 2015 J. Phys. Condens. Matter 27 185304Google Scholar

    [23]

    陈卫东, 刘丰 2009 电子学报 37 1624Google Scholar

    Chen W D, Liu F 2009 Acta Elec. Sin. 37 1624Google Scholar

    [24]

    Zhao J J, Tang M, Oh K H, Feng Z H, Zhao K, Liao R L, Fu S N, Shum P P, Liu D M 2017 Photon. Res. 8 261

    [25]

    Nejad R M, Tavakoli F, Wang L X, Guan X, Larochelle S, Rusch L A 2018 J. Lightwave Technol. 36 3794Google Scholar

    [26]

    Lee M S, Park B G, Cho I H, Lee J H 2012 IEEE Electron Device Lett. 33 1613Google Scholar

    [27]

    de Abajo F J G 2010 Rev. Mod. Phys. 82 209Google Scholar

    [28]

    翟利, 薛文瑞, 杨荣草, 韩丽萍 2015 光学学报 35 1123002

    Zhai L, Xue W R, Yang R C, Han L P 2015 Acta Opt. Sin. 35 1123002

    [29]

    Nikitin A Y, Guinea F, García-Vidal F J, Martín-Moreno L 2011 Phys.Rev. B 84 195446Google Scholar

    [30]

    Yeh C 1962 J. Appl. Phys. 33 3235Google Scholar

    [31]

    D Erricolo, G Carluccio 2013 ACM Trans. Math. Soft. 40 8

    [32]

    He S L, Zhang X Z, He Y R 2013 Opt. Express 21 30664Google Scholar

    [33]

    Ye L F, Sui K H, Liu Y H, Zhang M, Liu Q H 2018 Opt. Express 26 15935Google Scholar

    [34]

    Ye S, Wang Z X, Sun C R, Dong C B, Wei B Z, Wu B L, Jian S S 2018 Opt. Express 26 23854Google Scholar

    [35]

    Chen M, Sheng P C, Sun W, Cai J J 2016 Opt.Commun. 376 41Google Scholar

  • [1] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] Gao Feng, Li Huan-Qing, Song Zhuo, Zhao Yu-Hong. The Evolution of Grain Boundary Dislocations in Graphene Induced by Strain: Three-Mode Phase-Field Crystal Method. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [3] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [4] Wang Bo-Yun, Zhu Zi-Hao, Gao You-Kang, Zeng Qing-Dong, Liu Yang, Du Jun, Wang Tao, Yu Hua-Qing. Plasmon induced transparency effect based on graphene nanoribbon waveguide side-coupled with rectangle cavities system. Acta Physica Sinica, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [5] Li Hui-Hui, Xue Wen-Rui, Li Ning, Du Yi-Da, Li Chang-Yong. Mode properties of elliptical dielectric waveguide with nested eccentric hollow cylinder coated with graphene. Acta Physica Sinica, 2022, 71(10): 108101. doi: 10.7498/aps.71.20212321
    [6] Plasmon induced transparency effect based on graphene nanoribbon waveguide side–coupled with rectangle cavities system. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211397
    [7] Dong Hui-Ying, Qin Xiao-Ru, Xue Wen-Rui, Cheng Xin, Li Ning, Li Chang-Yong. Mode characteristics of asymmetric graphene-coated elliptical dielectric nano-parallel wires waveguide. Acta Physica Sinica, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [8] Wang Tian-Hui, Li Ang, Han Bai. First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors. Acta Physica Sinica, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [9] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [10] Wei Zhuang-Zhi, Xue Wen-Rui, Peng Yan-Ling, Cheng Xin, Li Chang-Yong. Modes characteristics analysis of THz waveguides based on three graphene-coated dielectric nanowires. Acta Physica Sinica, 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [11] Peng Yan-Ling, Xue Wen-Rui, Wei Zhuang-Zhi, Li Chang-Yong. Mode properties analysis of graphene-coated asymmetric parallel dielectric nanowire waveguides. Acta Physica Sinica, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [12] Gu Ji-Wei, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Can, Tang Sai. Phase-field crystal modelling the nucleation processes of graphene structures on different substrates. Acta Physica Sinica, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [13] Li Dan, Liang Jun-Wu, Liu Hua-Wei, Zhang Xue-Hong, Wan Qiang, Zhang Qing-Lin, Pan An-Lian. Asymmetric waveguide and the dual-wavelength stimulated emission for CdS/CdS0.48Se0.52 axial nanowire heterostructures. Acta Physica Sinica, 2017, 66(6): 064204. doi: 10.7498/aps.66.064204
    [14] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [15] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [16] Chen Yuan-Yuan, Zou Ren-Hua, Song Gang, Zhang Kai, Yu Li, Zhao Yu-Fang, Xiao Jing-Hua. The polarization characteristics of the excitation and emission of surface plasmon polarization in the Ag nanowires. Acta Physica Sinica, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [17] Yue Song, Li Zhi, Chen Jian-Jun, Gong Qi-Huang. Dielectric waveguide with deep subwavelength mode confinement based on coupled nanowires. Acta Physica Sinica, 2011, 60(9): 094214. doi: 10.7498/aps.60.094214
    [18] Lai Yun-Feng. Effects of synthesis parameters on the growth of magnesium oxide nanowries by vapor-liquid-solid mechanism at low temperatures. Acta Physica Sinica, 2010, 59(12): 8814-8819. doi: 10.7498/aps.59.8814
    [19] Zeng Chun-Lai, Tang Dong-Sheng, Liu Xing-Hui, Hai Kuo, Yang Yi, Yuan Hua-Jun, Xie Si-Shen. Controllable preparation of SnO2 one-dimensional nanostructures by chemical vapor deposition. Acta Physica Sinica, 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [20] Li De-Sheng, Zhang Hong-Qing. A notes on the variable separation approach. Acta Physica Sinica, 2004, 53(6): 1639-1642. doi: 10.7498/aps.53.1639
Metrics
  • Abstract views:  7802
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  26 November 2018
  • Accepted Date:  27 December 2018
  • Available Online:  01 March 2019
  • Published Online:  05 March 2019

/

返回文章
返回
Baidu
map