Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation, structure configuration, physical properties and applications of borophene and two-dimensional alkaline-earth metal boride nanomaterials

Guo Ze-Kun Tian Yan Gan Hai-Bo Li Zi-Juan Zhang Tong Xu Ning-Sheng Chen Jun Chen Huan-Jun Deng Shao-Zhi Liu Fei

Citation:

Preparation, structure configuration, physical properties and applications of borophene and two-dimensional alkaline-earth metal boride nanomaterials

Guo Ze-Kun, Tian Yan, Gan Hai-Bo, Li Zi-Juan, Zhang Tong, Xu Ning-Sheng, Chen Jun, Chen Huan-Jun, Deng Shao-Zhi, Liu Fei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the rise of graphene, two-dimensional nanomaterials have been significantly developed in recent years. As novel two-dimensional nanostructures, borophene and alkaline-earth metal boride two-dimensional materials have received much attention because of their unique physical and chemical properties, such as high Fermi velocities, high electron mobilities, large Young's moduli, high transparencies, negative Poisson's ratios and high chemical stabilities. This paper focuses on the researches of the fabrication techniques, structure configurations, properties and applications of borophene and two-dimensional alkaline-earth metal boride nanomaterials. Firstly, the current preparation methods and structure configurations of borophene are summarized. Secondly, the possible structures and fabrication techniques of two-dimensional alkaline-earth metal boride nanomaterials are introduced in detail. Thirdly, the physical properties of borophene and two-dimensional alkaline-earth metal boride nanomaterials are investigated. Finally, the most promising application areas of borophene and two-dimensional alkaline-earth metal boride nanomaterials in the future are predicted.
      Corresponding author: Liu Fei, liufei@mail.sysu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB933601), the Special Foundation of State Major Scientific Instrument and Equipment Development of China (Grant No. 2013YQ12034506), the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313313), the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China (Grant No.[2014]1685), the Fundamental Research Funds for the Central Universities, China (Grant No. 111gzd05), and the State Key Laboratory of Optoelectronic Materials and Technology Independent Subject (Grant No. OEMT-2015-RC-05).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396

    [3]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M, Geim A K 2008 Science 320 1308

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Balandin A A 2011 Nat. Mater. 10 569

    [6]

    Palmer D J 2006 Mater. Today 9 13

    [7]

    Cai L, Wang H P, Yu G 2016 Prog. Phys. 36 21 (in Chinese) [蔡乐, 王华平, 于贵 2016 物理学进展 36 21]

    [8]

    Huo N J, Yang Y J, Li J B 2017 J. Semicond. 38 031002

    [9]

    Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A 2015 ACS Nano 9 11509

    [10]

    Grazianetti C, Cinquanta E, Molle A 2016 2D Mater. 3 012001

    [11]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414

    [12]

    Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M 2015 Small 11 640

    [13]

    Camilli L, Sutter E, Sutter P 2014 2D Mater. 1 025003

    [14]

    Kamal C, Ezawa M 2015 Phys. Rev. B 91 085423

    [15]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. Engl. 54 3112

    [16]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513

    [17]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372

    [18]

    Xu L C, Du A, Kou L 2016 Phys. Chem. Chem. Phys. 18 27284

    [19]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563

    [20]

    Lherbier A, Botello-Mendez A R, Charlier J C 2016 2D Mater. 3 045006

    [21]

    Jiao Y, Ma F, Bell J, Bilic A, Du A 2016 Angew. Chem. Int. Ed. Engl. 55 10292

    [22]

    Quhe R, Fei R, Liu Q, Zheng J, Li H, Xu C, Ni Z, Wang Y, Yu D, Gao Z, Lu J 2012 Sci. Rep. 2 853

    [23]

    Ye M, Quhe R, Zheng J X, Ni Z Y, Wang Y Y, Yuan Y K, Tse G, Shi J J, Gao Z X, Lu J 2014 Phys. E: Low-Dimensional Syst. Nanostruct. 59 60

    [24]

    Xie S Y, Li X B, Tian W Q, Chen N K, Wang Y, Zhang S, Sun H B 2015 Phys. Chem. Chem. Phys. 17 1093

    [25]

    Okatov S V, Ivanovskii A L, Medvedeva Y E, Medvedeva N I 2001 Phys. Status Solidi B 225 R3

    [26]

    Ackland K, Venkatesan M, Coey J M D 2012 J. Appl. Phys. 111 07A322

    [27]

    Zhang L, Liu H H, Liu L J, Zhao G Q, Wu Y, Min G H 2017 J. Inorganic Mater. 32 555

    [28]

    Gan L Y, Wang R, Jin Y J, Ling D B, Zhao J Z, Xu W P, Liu J F, Xu H 2017 Phys. Chem. Chem. Phys. 19 8210

    [29]

    Tai G, Hu T, Zhou Y, Wang X, Kong J, Zeng T, You Y, Wang Q 2015 Angew. Chem. Int. Ed. Engl. 54 15473

    [30]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 563

    [31]

    Feng B, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y, Li H, Chen L, Wu K, Kumigashira H, Komori F, Chiang T C, Meng S, Matsuda I 2017 Phys. Rev. Lett. 118 096401

    [32]

    Zhao Y C, Zeng S M, Ni J 2016 Appl. Phys. Lett. 108 242601

    [33]

    Zhang H, Li Y, Hou J, Du A, Chen Z 2016 Nano Lett. 16 6124

    [34]

    Zhang X, Hu J, Cheng Y, Yang H Y, Yao Y, Yang S A 2016 Nanoscale 8 15340

    [35]

    Jiang H R, Lu Z H, Wu M C, Ciucci F, Zhao T S 2016 Nano Energy 23 97

    [36]

    Lopez-Bezanilla A, Littlewood P B 2016 Phys. Rev. B 93 241405

    [37]

    Li W L, Jian T, Chen X, Chen T T, Lopez G V, Li J, Wang L S 2016 Angew. Chem. Int. Ed. Engl. 55 7358

    [38]

    Liu F, Tian J F, Bao L H, Yang T Z, Shen C M, Lai X Y, Xiao Z M, Xie W G, Deng S Z, Chen J, She J C, Xu N S, Gao H J 2008 Adv. Mater. 20 2609

    [39]

    Liu F, Gan H B, Tang D M, Cao Y Z, Mo X S, Chen J, Deng S Z, Xu N S, Golberg D, Bando Y 2014 Small 10 685

    [40]

    Liu F, Shen C M, Su Z J, Ding X L, Deng S Z, Chen J, Xu N S, Gao H J 2010 J. Mater. Chem. 20 2197

    [41]

    Xie S S, Chen H, Solodkyi I, Vasylkiv O, Tok A I Y 2015 Scr. Mater. 99 69

    [42]

    Zhou M Y, Liu C S, Yan X H 2015 J. Appl. Phys. 117 114307

    [43]

    Zhou X F, Oganov A R, Shao X, Zhu Q, Wang H T 2014 Phys. Rev. Lett. 113 176101

    [44]

    Zhang Z, Mannix A J, Hu Z, Kiraly B, Guisinger N P, Hersam M C, Yakobson B I 2016 Nano Lett. 16 6622

    [45]

    Ni G X, Zheng Y, Bae S, Kim H R, Pachoud A, Kim Y S, Tan C L, Im D, Ahn J H, Hong B H, Ozyilmaz B 2012 ACS Nano 6 1158

    [46]

    Wang Y, Zheng Y, Xu X F, Dubuisson E, Bao Q L, Lu J, Loh K P 2011 ACS Nano 5 9927

    [47]

    Lock E H, Baraket M, Laskoski M, Mulvaney S P, Lee W K, Sheehan P E, Hines D R, Robinson J T, Tosado J, Fuhrer M S, Hernandez S C, Waltont S G 2012 Nano Lett. 12 102

    [48]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [49]

    Ago H, Kawahara K, Ogawa Y, Tanoue S, Bissett M A, Tsuji M, Sakaguchi H, Koch R J, Fromm F, Seyller T, Komatsu K, Tsukagoshi K 2013 Appl. Phys. Express 6 075101

    [50]

    Ding X L, Liu X X, Huang Y Y, Zhang X F, Zhao Q J, Xiang X H, Li G L, He P F, Wen Z Y, Li J, Huang Y H 2016 Nano Energy 27 647

    [51]

    Tsai H S, Hsiao C H, Lin Y P, Chen C W, Ouyang H, Liang J H 2016 Small 12 5251

    [52]

    Mannix A J, Kiraly B, Hersam M C, Guisinger N P 2017 Nat. Rev. Chem. 1 0014

    [53]

    Abanin D A, Levitov L S 2008 Phys. Rev. B 78 035416

    [54]

    Jun Y W, Choi J S, Cheon J 2006 Angew. Chem. Int. Ed. Engl. 45 3414

    [55]

    Fan L, Zou J, Li Z, Li X, Wang K, Wei J, Zhong M, Wu D, Xu Z, Zhu H 2012 Nanotechnology 23 115605

    [56]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033

    [57]

    Zhang G, Wang J, Wu Z, Shi R, Ouyang W, Amini A, Chandrashekar B N, Wang N, Cheng C 2017 ACS Appl. Mater. Interfaces 9 763

    [58]

    Oganov A R, Chen J, Gatti C, Ma Y, Ma Y, Glass C W, Liu Z, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863

    [59]

    Kunstmann J, Quandt A 2006 Phys. Rev. B 74 035413

    [60]

    Evans M H, Joannopoulos J D, Pantelides S T 2005 Phys. Rev. B 72 045434

    [61]

    Li W L, Chen Q, Tian W J, Bai H, Zhao Y F, Hu H S, Li J, Zhai H J, Li S D, Wang L S 2014 J. Am. Chem. Soc. 136 12257

    [62]

    Li W L, Zhao Y F, Hu H S, Li J, Wang L S 2014 Angew. Chem. Int. Ed. Engl. 53 5540

    [63]

    Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nat. Commun. 5 3113

    [64]

    Fowler J E, Ugalde J M 2000 J. Phys. Chem. A 104 397

    [65]

    Huang W, Sergeeva A P, Zhai H J, Averkiev B B, Wang L S, Boldyrev A I 2010 Nat. Chem. 2 202

    [66]

    Popov I A, Piazza Z A, Li W L, Wang L S, Boldyrev A I 2013 J. Chem. Phys. 139 144307

    [67]

    Boustani I 1997 Phys. Rev. B 55 16426

    [68]

    Liu Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Ed. Engl. 52 3156

    [69]

    Zhang Z, Yang Y, Gao G, Yakobson B I 2015 Angew. Chem. Int. Ed. Engl. 54 13022

    [70]

    Yuan J H, Zhang L W, Liew K M 2015 RSC Adv. 5 74399

    [71]

    Zhang Z H, Yang Y, Penev E S, Yakobson B I 2017 Adv. Funct. Mater. 27 1605059

    [72]

    Xu S G, Zhao Y J, Liao J H, Yang X B, Xu H 2016 Nano Res. 9 2616

    [73]

    Piazza Z A, Popov I A, Li W L, Pal R, Zeng X C, Boldyrev A I, Wang L S 2014 J. Chem. Phys. 141 034303

    [74]

    Bao L H, Qi X P, Tana, Chao L M, Tegus O 2016 CrystEngComm 18 1223

    [75]

    Das S K, Bedar A, Kannan A, Jasuja K 2015 Sci. Rep. 5 10522

    [76]

    Tynell T, Aizawa T, Ohkubo I, Nakamura K, Mori T 2016 J. Cryst. Growth 449 10

    [77]

    Liu H H, Zhang L, Zhao G Q, Feng G, Min G H 2015 Ceram. Int. 41 7745

    [78]

    Dorneles L S, Venkatesan M, Moliner M, Lunney J G, Coey J M D 2004 Appl. Phys. Lett. 85 6377

    [79]

    Kato Y, Shiraishi N, Tsuchimine N, Kobayashi S, Yoshimoto M 2010 J. Cryst. Growth 312 378

    [80]

    Stankiewicz J, Rosa P F S, Schlottmann P, Fisk Z 2016 Phys. Rev. B 94 125141

    [81]

    Kou L, Ma Y, Tang C, Sun Z, Du A, Chen C 2016 Nano Lett. 16 7910

    [82]

    Padilha J E, Miwa R H, Fazzio A 2016 Phys. Chem. Chem. Phys. 18 25491

    [83]

    Massote D V P, Liang L B, Kharche N, Meunier V 2016 Phys. Rev. B 94 195416

    [84]

    Sun H, Li Q, Wan X G 2016 Phys. Chem. Chem. Phys. 18 14927

    [85]

    Wang H F, Li Q F, Gao Y, Miao F, Zhou X F, Wan X G 2016 New J. Phys. 18 073016

    [86]

    Zabolotskiy A D, Lozovik Y E 2016 Phys. Rev. B 94 165403

    [87]

    Pang Z Q, Qian X, Wei Y J, Yang R G 2016 EPL 116 36001

    [88]

    Spear J C, Ewers B W, Batteas J D 2015 Nano Today 10 301

    [89]

    Mortazavi B, Dianat A, Rahaman O, Cuniberti G, Rabczuk T 2016 J. Power Sources 329 456

    [90]

    Hardikar R P, Das D, Han S S, Lee K R, Singh A K 2014 Phys. Chem. Chem. Phys. 16 16502

    [91]

    Huang S Z, Zhang L L, Zhu J L, Jiang S P, Shen P K 2016 J. Mater. Chem. A 4 14155

    [92]

    Meng W, Wen L N, Song Z H, Cao N, Qin X 2017 J. Solid State Electrochem. 21 665

    [93]

    Wang M, Yang Y, Yang Z Z, Gu L, Chen Q W, Yu Y 2017 Adv. Sci. 4 1600468

    [94]

    Jena N K, Araujo R B, Shukla V, Ahuja R 2017 ACS Appl. Mater. Interfaces 9 16148

    [95]

    Rao D W, Zhang L Y, Meng Z S, Zhang X R, Wang Y H, Qiao G J, Shen X Q, Xia H, Liu J H, Lu R F 2017 J. Mater. Chem. A 5 2328

    [96]

    Kou L, Ma Y, Zhou L, Sun Z, Gu Y, Du A, Smith S, Chen C 2016 Nanoscale 8 20111

    [97]

    Shi L, Ling C Y, Ouyang Y X, Wang J L 2017 Nanoscale 9 533

    [98]

    Liu C S, Wang X F, Ye X J, Yan X H, Zeng Z 2014 J. Chem. Phys. 141 194306

    [99]

    Li L L, Zhang H, Cheng X L 2017 Comput. Mater. Sci. 137 119

    [100]

    Wang J C, Du Y, Sun L X 2016 Int. J. Hydrogen Energy 41 5276

    [101]

    Tayran C, Aydin S, Cakmak M, Ellialtioglu S 2016 Comput. Mater. Sci. 124 130

    [102]

    Sahle C J, Sternemann C, Giacobbe C, Yan Y G, Weis C, Harder M, Forov Y, Spiekermann G, Tolan M, Krisch M, Remhof A 2016 Phys. Chem. Chem. Phys. 18 19866

    [103]

    Ramanan B A 2017 J. Mol. Struct. 1131 171

    [104]

    Kolmogorov A N, Shah S, Margine E R, Kleppe A K, Jephcoat A P 2012 Phys. Rev. Lett. 109 075501

    [105]

    Li X, Huang X L, Duan D F, Wu G, Liu M K, Zhuang Q, Wei S L, Huang Y P, Li F F, Zhou Q, Liu B B, Cui T 2016 Rsc. Adv. 6 18077

    [106]

    Hudson Z M, Wang S 2009 Acc. Chem. Res. 42 1584

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396

    [3]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M, Geim A K 2008 Science 320 1308

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Balandin A A 2011 Nat. Mater. 10 569

    [6]

    Palmer D J 2006 Mater. Today 9 13

    [7]

    Cai L, Wang H P, Yu G 2016 Prog. Phys. 36 21 (in Chinese) [蔡乐, 王华平, 于贵 2016 物理学进展 36 21]

    [8]

    Huo N J, Yang Y J, Li J B 2017 J. Semicond. 38 031002

    [9]

    Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A 2015 ACS Nano 9 11509

    [10]

    Grazianetti C, Cinquanta E, Molle A 2016 2D Mater. 3 012001

    [11]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414

    [12]

    Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M 2015 Small 11 640

    [13]

    Camilli L, Sutter E, Sutter P 2014 2D Mater. 1 025003

    [14]

    Kamal C, Ezawa M 2015 Phys. Rev. B 91 085423

    [15]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. Engl. 54 3112

    [16]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513

    [17]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372

    [18]

    Xu L C, Du A, Kou L 2016 Phys. Chem. Chem. Phys. 18 27284

    [19]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563

    [20]

    Lherbier A, Botello-Mendez A R, Charlier J C 2016 2D Mater. 3 045006

    [21]

    Jiao Y, Ma F, Bell J, Bilic A, Du A 2016 Angew. Chem. Int. Ed. Engl. 55 10292

    [22]

    Quhe R, Fei R, Liu Q, Zheng J, Li H, Xu C, Ni Z, Wang Y, Yu D, Gao Z, Lu J 2012 Sci. Rep. 2 853

    [23]

    Ye M, Quhe R, Zheng J X, Ni Z Y, Wang Y Y, Yuan Y K, Tse G, Shi J J, Gao Z X, Lu J 2014 Phys. E: Low-Dimensional Syst. Nanostruct. 59 60

    [24]

    Xie S Y, Li X B, Tian W Q, Chen N K, Wang Y, Zhang S, Sun H B 2015 Phys. Chem. Chem. Phys. 17 1093

    [25]

    Okatov S V, Ivanovskii A L, Medvedeva Y E, Medvedeva N I 2001 Phys. Status Solidi B 225 R3

    [26]

    Ackland K, Venkatesan M, Coey J M D 2012 J. Appl. Phys. 111 07A322

    [27]

    Zhang L, Liu H H, Liu L J, Zhao G Q, Wu Y, Min G H 2017 J. Inorganic Mater. 32 555

    [28]

    Gan L Y, Wang R, Jin Y J, Ling D B, Zhao J Z, Xu W P, Liu J F, Xu H 2017 Phys. Chem. Chem. Phys. 19 8210

    [29]

    Tai G, Hu T, Zhou Y, Wang X, Kong J, Zeng T, You Y, Wang Q 2015 Angew. Chem. Int. Ed. Engl. 54 15473

    [30]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 563

    [31]

    Feng B, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y, Li H, Chen L, Wu K, Kumigashira H, Komori F, Chiang T C, Meng S, Matsuda I 2017 Phys. Rev. Lett. 118 096401

    [32]

    Zhao Y C, Zeng S M, Ni J 2016 Appl. Phys. Lett. 108 242601

    [33]

    Zhang H, Li Y, Hou J, Du A, Chen Z 2016 Nano Lett. 16 6124

    [34]

    Zhang X, Hu J, Cheng Y, Yang H Y, Yao Y, Yang S A 2016 Nanoscale 8 15340

    [35]

    Jiang H R, Lu Z H, Wu M C, Ciucci F, Zhao T S 2016 Nano Energy 23 97

    [36]

    Lopez-Bezanilla A, Littlewood P B 2016 Phys. Rev. B 93 241405

    [37]

    Li W L, Jian T, Chen X, Chen T T, Lopez G V, Li J, Wang L S 2016 Angew. Chem. Int. Ed. Engl. 55 7358

    [38]

    Liu F, Tian J F, Bao L H, Yang T Z, Shen C M, Lai X Y, Xiao Z M, Xie W G, Deng S Z, Chen J, She J C, Xu N S, Gao H J 2008 Adv. Mater. 20 2609

    [39]

    Liu F, Gan H B, Tang D M, Cao Y Z, Mo X S, Chen J, Deng S Z, Xu N S, Golberg D, Bando Y 2014 Small 10 685

    [40]

    Liu F, Shen C M, Su Z J, Ding X L, Deng S Z, Chen J, Xu N S, Gao H J 2010 J. Mater. Chem. 20 2197

    [41]

    Xie S S, Chen H, Solodkyi I, Vasylkiv O, Tok A I Y 2015 Scr. Mater. 99 69

    [42]

    Zhou M Y, Liu C S, Yan X H 2015 J. Appl. Phys. 117 114307

    [43]

    Zhou X F, Oganov A R, Shao X, Zhu Q, Wang H T 2014 Phys. Rev. Lett. 113 176101

    [44]

    Zhang Z, Mannix A J, Hu Z, Kiraly B, Guisinger N P, Hersam M C, Yakobson B I 2016 Nano Lett. 16 6622

    [45]

    Ni G X, Zheng Y, Bae S, Kim H R, Pachoud A, Kim Y S, Tan C L, Im D, Ahn J H, Hong B H, Ozyilmaz B 2012 ACS Nano 6 1158

    [46]

    Wang Y, Zheng Y, Xu X F, Dubuisson E, Bao Q L, Lu J, Loh K P 2011 ACS Nano 5 9927

    [47]

    Lock E H, Baraket M, Laskoski M, Mulvaney S P, Lee W K, Sheehan P E, Hines D R, Robinson J T, Tosado J, Fuhrer M S, Hernandez S C, Waltont S G 2012 Nano Lett. 12 102

    [48]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [49]

    Ago H, Kawahara K, Ogawa Y, Tanoue S, Bissett M A, Tsuji M, Sakaguchi H, Koch R J, Fromm F, Seyller T, Komatsu K, Tsukagoshi K 2013 Appl. Phys. Express 6 075101

    [50]

    Ding X L, Liu X X, Huang Y Y, Zhang X F, Zhao Q J, Xiang X H, Li G L, He P F, Wen Z Y, Li J, Huang Y H 2016 Nano Energy 27 647

    [51]

    Tsai H S, Hsiao C H, Lin Y P, Chen C W, Ouyang H, Liang J H 2016 Small 12 5251

    [52]

    Mannix A J, Kiraly B, Hersam M C, Guisinger N P 2017 Nat. Rev. Chem. 1 0014

    [53]

    Abanin D A, Levitov L S 2008 Phys. Rev. B 78 035416

    [54]

    Jun Y W, Choi J S, Cheon J 2006 Angew. Chem. Int. Ed. Engl. 45 3414

    [55]

    Fan L, Zou J, Li Z, Li X, Wang K, Wei J, Zhong M, Wu D, Xu Z, Zhu H 2012 Nanotechnology 23 115605

    [56]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033

    [57]

    Zhang G, Wang J, Wu Z, Shi R, Ouyang W, Amini A, Chandrashekar B N, Wang N, Cheng C 2017 ACS Appl. Mater. Interfaces 9 763

    [58]

    Oganov A R, Chen J, Gatti C, Ma Y, Ma Y, Glass C W, Liu Z, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863

    [59]

    Kunstmann J, Quandt A 2006 Phys. Rev. B 74 035413

    [60]

    Evans M H, Joannopoulos J D, Pantelides S T 2005 Phys. Rev. B 72 045434

    [61]

    Li W L, Chen Q, Tian W J, Bai H, Zhao Y F, Hu H S, Li J, Zhai H J, Li S D, Wang L S 2014 J. Am. Chem. Soc. 136 12257

    [62]

    Li W L, Zhao Y F, Hu H S, Li J, Wang L S 2014 Angew. Chem. Int. Ed. Engl. 53 5540

    [63]

    Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nat. Commun. 5 3113

    [64]

    Fowler J E, Ugalde J M 2000 J. Phys. Chem. A 104 397

    [65]

    Huang W, Sergeeva A P, Zhai H J, Averkiev B B, Wang L S, Boldyrev A I 2010 Nat. Chem. 2 202

    [66]

    Popov I A, Piazza Z A, Li W L, Wang L S, Boldyrev A I 2013 J. Chem. Phys. 139 144307

    [67]

    Boustani I 1997 Phys. Rev. B 55 16426

    [68]

    Liu Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Ed. Engl. 52 3156

    [69]

    Zhang Z, Yang Y, Gao G, Yakobson B I 2015 Angew. Chem. Int. Ed. Engl. 54 13022

    [70]

    Yuan J H, Zhang L W, Liew K M 2015 RSC Adv. 5 74399

    [71]

    Zhang Z H, Yang Y, Penev E S, Yakobson B I 2017 Adv. Funct. Mater. 27 1605059

    [72]

    Xu S G, Zhao Y J, Liao J H, Yang X B, Xu H 2016 Nano Res. 9 2616

    [73]

    Piazza Z A, Popov I A, Li W L, Pal R, Zeng X C, Boldyrev A I, Wang L S 2014 J. Chem. Phys. 141 034303

    [74]

    Bao L H, Qi X P, Tana, Chao L M, Tegus O 2016 CrystEngComm 18 1223

    [75]

    Das S K, Bedar A, Kannan A, Jasuja K 2015 Sci. Rep. 5 10522

    [76]

    Tynell T, Aizawa T, Ohkubo I, Nakamura K, Mori T 2016 J. Cryst. Growth 449 10

    [77]

    Liu H H, Zhang L, Zhao G Q, Feng G, Min G H 2015 Ceram. Int. 41 7745

    [78]

    Dorneles L S, Venkatesan M, Moliner M, Lunney J G, Coey J M D 2004 Appl. Phys. Lett. 85 6377

    [79]

    Kato Y, Shiraishi N, Tsuchimine N, Kobayashi S, Yoshimoto M 2010 J. Cryst. Growth 312 378

    [80]

    Stankiewicz J, Rosa P F S, Schlottmann P, Fisk Z 2016 Phys. Rev. B 94 125141

    [81]

    Kou L, Ma Y, Tang C, Sun Z, Du A, Chen C 2016 Nano Lett. 16 7910

    [82]

    Padilha J E, Miwa R H, Fazzio A 2016 Phys. Chem. Chem. Phys. 18 25491

    [83]

    Massote D V P, Liang L B, Kharche N, Meunier V 2016 Phys. Rev. B 94 195416

    [84]

    Sun H, Li Q, Wan X G 2016 Phys. Chem. Chem. Phys. 18 14927

    [85]

    Wang H F, Li Q F, Gao Y, Miao F, Zhou X F, Wan X G 2016 New J. Phys. 18 073016

    [86]

    Zabolotskiy A D, Lozovik Y E 2016 Phys. Rev. B 94 165403

    [87]

    Pang Z Q, Qian X, Wei Y J, Yang R G 2016 EPL 116 36001

    [88]

    Spear J C, Ewers B W, Batteas J D 2015 Nano Today 10 301

    [89]

    Mortazavi B, Dianat A, Rahaman O, Cuniberti G, Rabczuk T 2016 J. Power Sources 329 456

    [90]

    Hardikar R P, Das D, Han S S, Lee K R, Singh A K 2014 Phys. Chem. Chem. Phys. 16 16502

    [91]

    Huang S Z, Zhang L L, Zhu J L, Jiang S P, Shen P K 2016 J. Mater. Chem. A 4 14155

    [92]

    Meng W, Wen L N, Song Z H, Cao N, Qin X 2017 J. Solid State Electrochem. 21 665

    [93]

    Wang M, Yang Y, Yang Z Z, Gu L, Chen Q W, Yu Y 2017 Adv. Sci. 4 1600468

    [94]

    Jena N K, Araujo R B, Shukla V, Ahuja R 2017 ACS Appl. Mater. Interfaces 9 16148

    [95]

    Rao D W, Zhang L Y, Meng Z S, Zhang X R, Wang Y H, Qiao G J, Shen X Q, Xia H, Liu J H, Lu R F 2017 J. Mater. Chem. A 5 2328

    [96]

    Kou L, Ma Y, Zhou L, Sun Z, Gu Y, Du A, Smith S, Chen C 2016 Nanoscale 8 20111

    [97]

    Shi L, Ling C Y, Ouyang Y X, Wang J L 2017 Nanoscale 9 533

    [98]

    Liu C S, Wang X F, Ye X J, Yan X H, Zeng Z 2014 J. Chem. Phys. 141 194306

    [99]

    Li L L, Zhang H, Cheng X L 2017 Comput. Mater. Sci. 137 119

    [100]

    Wang J C, Du Y, Sun L X 2016 Int. J. Hydrogen Energy 41 5276

    [101]

    Tayran C, Aydin S, Cakmak M, Ellialtioglu S 2016 Comput. Mater. Sci. 124 130

    [102]

    Sahle C J, Sternemann C, Giacobbe C, Yan Y G, Weis C, Harder M, Forov Y, Spiekermann G, Tolan M, Krisch M, Remhof A 2016 Phys. Chem. Chem. Phys. 18 19866

    [103]

    Ramanan B A 2017 J. Mol. Struct. 1131 171

    [104]

    Kolmogorov A N, Shah S, Margine E R, Kleppe A K, Jephcoat A P 2012 Phys. Rev. Lett. 109 075501

    [105]

    Li X, Huang X L, Duan D F, Wu G, Liu M K, Zhuang Q, Wei S L, Huang Y P, Li F F, Zhou Q, Liu B B, Cui T 2016 Rsc. Adv. 6 18077

    [106]

    Hudson Z M, Wang S 2009 Acc. Chem. Res. 42 1584

  • [1] Xu Shi-Han, He Chang-Chun, Yang Xiao-Bao. Theoretical study of long-range ordered vacancy distribution in two-dimensional boron structures. Acta Physica Sinica, 2024, 73(9): 096101. doi: 10.7498/aps.73.20231927
    [2] Han Tong-Wei, Li Xuan-Zheng, Zhao Ze-Ruo, Gu Ye-Tong, Ma Chuan, Zhang Xiao-Yan. Mechanical properties and deformation mechanisms of two-dimensional borophene under different loadings. Acta Physica Sinica, 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [3] Hu Hai-Tao, Guo Ai-Min. Quantum transport properties of bilayer borophene nanoribbons. Acta Physica Sinica, 2022, 71(22): 227301. doi: 10.7498/aps.71.20221304
    [4] Li Wen-Hui, Chen Lan, Wu Ke-Hui. Experimental synthesis of borophene. Acta Physica Sinica, 2022, 71(10): 108104. doi: 10.7498/aps.71.20220155
    [5] Pan Xiao-Jian, Bao Li-Hong, Ning Jun, Zhao Feng-Qi, Chao Luo-Meng, Liu Zi-Zhong. Synthesis and optical absorption properties of nanocrystalline rare earth hexaborides Nd1–xEuxB6 powders. Acta Physica Sinica, 2021, 70(3): 036101. doi: 10.7498/aps.70.20201288
    [6] Wu Min, Fei Hong-Ming, Lin Han, Zhao Xiao-Dan, Yang Yi-Biao, Chen Zhi-Hui. Design of asymmetric transmission of photonic crystal heterostructure based on two-dimensional hexagonal boron nitride material. Acta Physica Sinica, 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [7] Yuan Ying-Kuo, Guo Wei-Ling, Du Zai-Fa, Qian Feng-Song, Liu Ming, Wang Le, Xu Chen, Yan Qun, Sun Jie. Applications of graphene transistor optimized fabrication process in monolithic integrated driving gallium nitride micro-light-emitting diode. Acta Physica Sinica, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [8] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [9] Gao Tan-Hua, Zheng Fu-Chang, Wang Xiao-Chun. Tuning the electronic and magnetic property of semihydrogenated graphene and monolayer boron nitride heterostructure. Acta Physica Sinica, 2018, 67(16): 167101. doi: 10.7498/aps.67.20180538
    [10] Zhang Hui-Zhen, Li Jin-Tao, Lü Wen-Gang, Yang Hai-Fang, Tang Cheng-Chun, Gu Chang-Zhi, Li Jun-Jie. Fabrication of graphene nanostructure and bandgap tuning. Acta Physica Sinica, 2017, 66(21): 217301. doi: 10.7498/aps.66.217301
    [11] Tao Qiang, Ma Shuai-Ling, Cui Tian, Zhu Pin-Wen. Structures and properties of functional transition metal borides. Acta Physica Sinica, 2017, 66(3): 036103. doi: 10.7498/aps.66.036103
    [12] Wang Song, Wang Xing-Yun, Zhou Zhang-Yu, Yang Fa-Shun, Yang Jian, Fu Xing-Hua. Preparation, microstructure of B film and its applications in MgB2 superconducting Josephson junction. Acta Physica Sinica, 2016, 65(1): 017401. doi: 10.7498/aps.65.017401
    [13] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [14] Li Jun-Jun, Zhao Xue-Ping, Tao Qiang, Huang Xiao-Qing, Zhu Pin-Wen, Cui Tian, Wang Xin. Characterization of TiB2 synthesized at high pressure and high temperature. Acta Physica Sinica, 2013, 62(2): 026202. doi: 10.7498/aps.62.026202
    [15] Zhao Li-Kai, Zhao Er-Jun, Wu Zhi-Jian. First-principles calculations of structural thermodynamic and mechanical properties of 5d transitional metal diborides. Acta Physica Sinica, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [16] Li Jin, Gui Gui, Sun Li-Zhong, Zhong Jian-Xin. Structure transition of two-dimensional hexagonal BN under large uniaxial strain. Acta Physica Sinica, 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [17] Wang Wei-Na, Fang Qing-Qing, Zhou Jun, Wang Sheng-Nan, Yan Fang-Liang, Liu Yan-Mei, Li Yan, Lü Qing-Rong. Influence of fabrication technique on structure and photoluminescence of Zn1-xMgxO thin films. Acta Physica Sinica, 2009, 58(5): 3461-3467. doi: 10.7498/aps.58.3461
    [18] Li Xiu-Mei, Liu Tao, Guo Zhao-Hui, Zhu Ming-Gang, Li Wei. Effects of rare earth content on microstructure and magnetic properties of (Nd,Dy)-(Fe,Al)-B alloys. Acta Physica Sinica, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [19] Cao Pei-Jiang, Gu You-Song, Liu Fei, Liu Hong-Wen, Zhang Qi-Feng, Wang Yan-Guo, Gao Hong-Jun. Fabrication, morphology and structure of carbon nanotube arrays and bundles fabricated by a three-step rising temperature procedure. Acta Physica Sinica, 2004, 53(3): 854-860. doi: 10.7498/aps.53.854
    [20] Chai Yong-Quan, Jin Chang-Qing, Liu Bang-Gui. Comparative study on electronic structures of MgB2-like borides. Acta Physica Sinica, 2003, 52(11): 2883-2889. doi: 10.7498/aps.52.2883
Metrics
  • Abstract views:  7956
  • PDF Downloads:  714
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2017
  • Accepted Date:  10 October 2017
  • Published Online:  05 November 2017

/

返回文章
返回
Baidu
map