搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究

杨晶晶 李俊杰 邓伟 程骋 黄铭

引用本文:
Citation:

单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究

杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭

Transmission mode of a single layer graphene and its performance in the detection of the vibration spectrum of gas molecular

Yang Jing-Jing, Li Jun-Jie, Deng Wei, Cheng Cheng, Huang Ming
PDF
导出引用
  • 自2004年石墨烯被成功制备以来, 相关研究引起了广泛关注, 其中, 传感应用是一个重要方向. 目前, 有关石墨烯传感特性的研究都集中在低频, 即根据分子附着引起的电导率变化来实现检测. 然而, 由于大部分分子吸附都会使电导率发生变化, 因此该方法难以区分不同分子的特征. 论文基于Kubo公式, 结合数值仿真方法研究了单层石墨烯带的传输模式, 分析了有效模式指数与模式传输特性的关联, 证实了波导模的局域性和宽带特性. 同时, 利用一阶波导模与气体作用引起的传输强度的变化反演分子振动谱. 以SO2, CO和C7H8气体的传感为例, 基于本征分析验证了方法的有效性. 结果表明, 传输模式与分子作用能够产生耦合共振增强, 并且其变化趋势与气体分子振动谱一致; 在传输方向上, 分子与传输模式的作用范围越大, 则模式传输强度的变化越大. 该研究为实现气体分子指纹的识别和检测奠定了理论基础.
    Since its successful preparation in 2004, graphene has attracted a great deal of attention, and the sensing application is an important research field. But nearly all the researches about graphene sensors focus on low frequency band, of which the mechanism is mainly dependent on the detection of charge carrier concentration and conductivity variation induced by the absorption of molecules. However, due to the fact that most of the molecules absorbed on the surface of graphene will induce the change of conductivity, this method is incapable of distinguishing different molecules. Transmission mode of a single molecular layer is studied based on Kubo formula and combined with a numerical method. The relation between transmission properties and effective mode index is analyzed, and the broadband localization capability of the waveguide mode is demonstrated. Meanwhile, the variation of the transmission intensity which is due to the interaction between the first order waveguide mode and the gas is adopted to retrieve the vibration spectrum of molecules. Taking the sensing of SO2, CO and C7H8 as examples, the effectiveness of this method is verified based on eigenmode analysis. Results show that the transmission spectrum is consistent with the variation spectrum of gas molecules; besides, in the transmission direction, the larger the interaction range, the greater the attenuation of mode transmission intensity will be. This study has provided a theoretical foundation for the realization of the detection and identification of gas moleculan fingerprints.
      通信作者: 黄铭, huangming@ynu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61161007, 61261002, 61461052, 11564044)、教育部博士点基金(批准号: 20135301110003, 20125301120009)、中国博士后基金(批准号: 2013M531989、2014T70890) 和云南省自然科学基金重点项目(批准号: 2013FA006, 2015FA015)资助的课题.
      Corresponding author: Huang Ming, huangming@ynu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61161007, 61261002, 61461052, 11564044), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant Nos. 20135301110003, 20125301120009), China Postdoctoral Science Foundation (Grant Nos. 2013M531989, 2014T70890), and the Key Program of Natural Science of Yunnan Province, china (Grant Nos. 2013FA006, 2015FA015).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Tassin P, Koschny T, Kafesaki M, Soukoulis C M 2012 Nature Photonics 6 259

    [3]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2004 Nano Letter 8 902

    [4]

    Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V 2015 Science 347 1246501

    [5]

    Shen J H, Zhu Y H, Yang X L, Li C Z 2012 Chem. Commun. 48 3686

    [6]

    Zhao W, He D W, Wang Y S, Du X, Xin H 2015 Chin. Phys. B 24 047204

    [7]

    Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101(in Chinese) [周丽, 魏源, 黄志祥, 吴先良 2015 64 018101]

    [8]

    Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209(in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 214209]

    [9]

    Schedin F, Geimm A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nature Materials 6 652

    [10]

    Yoon H J, Jun D H, Yang J H, Zhou Z Z, Yang S S, Cheng M M C 2011 Sensors and Actuator B 157 310

    [11]

    Kulkarni G S, Reddy K, Zhong Z H, Fan X H 2014 Nature Communication 5 4376

    [12]

    Liu J B, Mendis R, Mittleman D M 2012 Physical Review B 86 241405

    [13]

    Yu N F, Wang Q J, Kats M A, Fan J A, Khanna S P, Li L H, Davies A G, Linfield E H, Capasso F 2010 Nature Materials 9 730

    [14]

    Yang J J, Huang M, Dai X Z, Huang M Y, Liang Y 2013 Europhysics Letters 103 44001

    [15]

    Wu L, Chu H S, Koh W S, Li E P 2010 Optics Express 18 14395

    [16]

    Choi S H, Kim Y L, Byun K M 2011 Optics Express 19 458

    [17]

    Verma R, Gupta B D, Jha R 2011 Sensors and Actuators B: Chemical 160 623

    [18]

    Wu J, Zhou C H, Yu J J, Cao H C, Li S B, Jia W 2014 Optics Laser Technology 59 99

    [19]

    Nikitin A Y, Guinea F, Garca-Vidal F J, Martn-Moreno L 2011 Physical Review B 84 161407

    [20]

    Francescato Y, Giannini V, Yang J J, Huang M, Maier S A 2014 ACS Photonics 1 437

    [21]

    Francescato Y, Giannini V, Maier S A 2013 New Journal of Physics 15 063020

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Tassin P, Koschny T, Kafesaki M, Soukoulis C M 2012 Nature Photonics 6 259

    [3]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2004 Nano Letter 8 902

    [4]

    Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V 2015 Science 347 1246501

    [5]

    Shen J H, Zhu Y H, Yang X L, Li C Z 2012 Chem. Commun. 48 3686

    [6]

    Zhao W, He D W, Wang Y S, Du X, Xin H 2015 Chin. Phys. B 24 047204

    [7]

    Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101(in Chinese) [周丽, 魏源, 黄志祥, 吴先良 2015 64 018101]

    [8]

    Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209(in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 214209]

    [9]

    Schedin F, Geimm A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nature Materials 6 652

    [10]

    Yoon H J, Jun D H, Yang J H, Zhou Z Z, Yang S S, Cheng M M C 2011 Sensors and Actuator B 157 310

    [11]

    Kulkarni G S, Reddy K, Zhong Z H, Fan X H 2014 Nature Communication 5 4376

    [12]

    Liu J B, Mendis R, Mittleman D M 2012 Physical Review B 86 241405

    [13]

    Yu N F, Wang Q J, Kats M A, Fan J A, Khanna S P, Li L H, Davies A G, Linfield E H, Capasso F 2010 Nature Materials 9 730

    [14]

    Yang J J, Huang M, Dai X Z, Huang M Y, Liang Y 2013 Europhysics Letters 103 44001

    [15]

    Wu L, Chu H S, Koh W S, Li E P 2010 Optics Express 18 14395

    [16]

    Choi S H, Kim Y L, Byun K M 2011 Optics Express 19 458

    [17]

    Verma R, Gupta B D, Jha R 2011 Sensors and Actuators B: Chemical 160 623

    [18]

    Wu J, Zhou C H, Yu J J, Cao H C, Li S B, Jia W 2014 Optics Laser Technology 59 99

    [19]

    Nikitin A Y, Guinea F, Garca-Vidal F J, Martn-Moreno L 2011 Physical Review B 84 161407

    [20]

    Francescato Y, Giannini V, Yang J J, Huang M, Maier S A 2014 ACS Photonics 1 437

    [21]

    Francescato Y, Giannini V, Maier S A 2013 New Journal of Physics 15 063020

  • [1] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化.  , 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [2] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究.  , 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [3] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为.  , 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [4] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟.  , 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [5] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性.  , 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [6] 董慧莹, 秦晓茹, 薛文瑞, 程鑫, 李宁, 李昌勇. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析.  , 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [7] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理.  , 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [8] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟.  , 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [9] 程鑫, 薛文瑞, 卫壮志, 董慧莹, 李昌勇. 涂覆石墨烯的椭圆形电介质纳米线光波导的模式特性分析.  , 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [10] 卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析.  , 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [11] 彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析.  , 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [12] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性.  , 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [13] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究.  , 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [14] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器.  , 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [15] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性.  , 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [16] 程正富, 郑瑞伦. 非简谐振动对石墨烯杨氏模量与声子频率的影响.  , 2016, 65(10): 104701. doi: 10.7498/aps.65.104701
    [17] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波.  , 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [18] 厉巧巧, 张昕, 吴江滨, 鲁妍, 谭平恒, 冯志红, 李佳, 蔚翠, 刘庆斌. 双层石墨烯位于18002150 cm-1频率范围内的和频拉曼模.  , 2014, 63(14): 147802. doi: 10.7498/aps.63.147802
    [19] 杨丽华, 杨伯君. 复杂分子振动谱中的对称性.  , 2014, 63(6): 060201. doi: 10.7498/aps.63.060201
    [20] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟.  , 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
计量
  • 文章访问数:  5847
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-16
  • 修回日期:  2015-05-16
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map