-
Graphene has potential applications in future microelectronics due to its novel electronic and mechanical properties. However, the lack of the bandgap in graphene poses a challenge and hinders its applications. In order to be able to work in ambient condition, gap engineering of graphene with nanostructure needs about sub-10 nm characteristic size, which increases the difficulty of fabrication and leads to less driving current that can be borne. In this paper, a new method to fabricate sub-10 nm graphene nanostructures is developed. With PMMA/Cr bilayer structure, sub-10 nm graphene nanostructures can be obtained precisely and repeatedly through controlling the etching time. Meanwhile, a new device based on graphene nanoconstrictions connected in parallel is designed and fabricated, whose band gap is bigger than that of graphene nanoribbon and whose characteristic width is the same as that of graphene nanoribbon. With the graphene nanoconstrictions connected in parallel, the band gap of the graphene can be adjusted effectively and the driving current can be significantly increased, which is very important for future practical applications of graphene.
-
Keywords:
- graphene /
- bandgap tuning /
- nanostructures
[1] Son Y W, Cohen M L, Louis S G 2006 Nature 444 347
[2] Elias D, Nair R, Mohiuddin T, Morozov S, Blake P, Halsall M, Ferrari A, Boukhvalov D, Katsnelson M, Geim A 2009 Science 323 610
[3] Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nat. Mater. 9 315
[4] Gorjizadeh N, Farajian A A, Esfarjani K, Kawazoe Y 2008 Phys. Rev. B 78 155427
[5] Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E 2010 Nano Lett. 10 3001
[6] Li X, Fan L, Li Z, Wang K, Zhong M, Wei J, Wu D, Zhu H 2012 Adv. Energy Mater. 2 425
[7] Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z 2011 Adv. Mater. 23 1020
[8] Some S, Kim J, Lee K, Kulkarni A, Yoon Y, Lee S, Kim T, Lee H 2012 Adv. Mater. 24 5481
[9] Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F, Ajayan P M 2010 Nat. Mater. 9 430
[10] Pandey R R, Fukumori M, Yousefi A T, Eguchi M, Tanaka D, Ogawa T, Tanaka H 2017 Nanotechnology 28 175704
[11] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951
[12] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, ShenY R, Wang F 2009 Nature 459 820
[13] Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151
[14] Vu T T, Nguyen T K Q, Huynh A H, Phan T K L, Tran V T 2017 Superlattice Microst. 102 451
[15] Han M Y, Oezyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805
[16] Han M Y, Brant J C, Kim P 2010 Phys. Rev. Lett. 104 056801
[17] Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877
[18] Bai J, Duan X, Huang Y 2009 Nano Lett. 9 2083
[19] Pan Z, Liu N, Fu L, Liu Z 2011 J. Am. Chem. Soc. 133 17578
[20] Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H 2008 Phys. Rev. Lett. 100 206803
[21] Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229
[22] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872
[23] Cataldo F, Compagnini G, Patane G, Ursini O, Angelini G, Ribic P R, Margaritondo G, Cricenti A, Palleschi G, Valentini F 2010 Carbon 48 2596
[24] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558
[25] Kim K, Sussman A, Zettl A 2010 ACS Nano 4 1362
[26] Kato T, Hatakeyama R 2012 Nat. Nanotech. 7 651
[27] Power S R, Jauho A P 2014 Phys. Rev. B 90 115408
[28] Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125
[29] Liang X G, Jung Y S, Wu S W, Ismach A, Olynick D L, Cabrini S, Bokor J 2010 Nano Lett. 10 2454
[30] Yang Y B, Yang X D, Zou X M, Wu S T, Wan D, Cao A Y, Liao L, Yuan Q, Duan X F 2017 Adv. Funct. Mater. 27 1604096
[31] Bai J, Zhong X, Jiang S, Huang Y, Duan X 2010 Nat. Nanotech. 5 190
[32] Elias A L, Motello-Mendez A R, Meneses-Rodriguez D, Ramirez-Gonzalez V J, Ci L, Munoz-Sandoval E, Ajayan P M, Terrones H, Terrnes M 2010 Nano Lett. 10 366
[33] Suk J W, Lee W H, Lee J, Chou H, Pine R D, Hao Y, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462
[34] Pisula W, Feng X, Mllen K 2010 Adv. Mater. 22 3634
[35] Lu Y, Goldsmith B, Strachan D R, Lim J H, Luo Z, Johnson A 2010 Small 6 2748
[36] Rotenberg E, Bostwick A, Ohta T, McChesney J L, Seyller T, Horn K 2008 Nat. Mater. 7 258
[37] Wang E, Lu X B, Ding S J, Yao W, Yan M Z, Wan G L, Deng K, Wang S P, Chen G R, Ma L G, Jung J, Fedorov A V, Zhang Y B, Zhang G Y, Zhou S Y 2016 Nat. Phys. 12 1111
[38] Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435
[39] Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301
[40] Li Z Z, Liu Z F, Liu Z R 2017 Nano Res. 10 2005
[41] Solymar L, Walsh D, Syms R R 2014 Electrical Properties of Materials (New York: Oxford University Press)
-
[1] Son Y W, Cohen M L, Louis S G 2006 Nature 444 347
[2] Elias D, Nair R, Mohiuddin T, Morozov S, Blake P, Halsall M, Ferrari A, Boukhvalov D, Katsnelson M, Geim A 2009 Science 323 610
[3] Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nat. Mater. 9 315
[4] Gorjizadeh N, Farajian A A, Esfarjani K, Kawazoe Y 2008 Phys. Rev. B 78 155427
[5] Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E 2010 Nano Lett. 10 3001
[6] Li X, Fan L, Li Z, Wang K, Zhong M, Wei J, Wu D, Zhu H 2012 Adv. Energy Mater. 2 425
[7] Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z 2011 Adv. Mater. 23 1020
[8] Some S, Kim J, Lee K, Kulkarni A, Yoon Y, Lee S, Kim T, Lee H 2012 Adv. Mater. 24 5481
[9] Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F, Ajayan P M 2010 Nat. Mater. 9 430
[10] Pandey R R, Fukumori M, Yousefi A T, Eguchi M, Tanaka D, Ogawa T, Tanaka H 2017 Nanotechnology 28 175704
[11] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951
[12] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, ShenY R, Wang F 2009 Nature 459 820
[13] Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151
[14] Vu T T, Nguyen T K Q, Huynh A H, Phan T K L, Tran V T 2017 Superlattice Microst. 102 451
[15] Han M Y, Oezyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805
[16] Han M Y, Brant J C, Kim P 2010 Phys. Rev. Lett. 104 056801
[17] Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877
[18] Bai J, Duan X, Huang Y 2009 Nano Lett. 9 2083
[19] Pan Z, Liu N, Fu L, Liu Z 2011 J. Am. Chem. Soc. 133 17578
[20] Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H 2008 Phys. Rev. Lett. 100 206803
[21] Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229
[22] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872
[23] Cataldo F, Compagnini G, Patane G, Ursini O, Angelini G, Ribic P R, Margaritondo G, Cricenti A, Palleschi G, Valentini F 2010 Carbon 48 2596
[24] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558
[25] Kim K, Sussman A, Zettl A 2010 ACS Nano 4 1362
[26] Kato T, Hatakeyama R 2012 Nat. Nanotech. 7 651
[27] Power S R, Jauho A P 2014 Phys. Rev. B 90 115408
[28] Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125
[29] Liang X G, Jung Y S, Wu S W, Ismach A, Olynick D L, Cabrini S, Bokor J 2010 Nano Lett. 10 2454
[30] Yang Y B, Yang X D, Zou X M, Wu S T, Wan D, Cao A Y, Liao L, Yuan Q, Duan X F 2017 Adv. Funct. Mater. 27 1604096
[31] Bai J, Zhong X, Jiang S, Huang Y, Duan X 2010 Nat. Nanotech. 5 190
[32] Elias A L, Motello-Mendez A R, Meneses-Rodriguez D, Ramirez-Gonzalez V J, Ci L, Munoz-Sandoval E, Ajayan P M, Terrones H, Terrnes M 2010 Nano Lett. 10 366
[33] Suk J W, Lee W H, Lee J, Chou H, Pine R D, Hao Y, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462
[34] Pisula W, Feng X, Mllen K 2010 Adv. Mater. 22 3634
[35] Lu Y, Goldsmith B, Strachan D R, Lim J H, Luo Z, Johnson A 2010 Small 6 2748
[36] Rotenberg E, Bostwick A, Ohta T, McChesney J L, Seyller T, Horn K 2008 Nat. Mater. 7 258
[37] Wang E, Lu X B, Ding S J, Yao W, Yan M Z, Wan G L, Deng K, Wang S P, Chen G R, Ma L G, Jung J, Fedorov A V, Zhang Y B, Zhang G Y, Zhou S Y 2016 Nat. Phys. 12 1111
[38] Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435
[39] Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301
[40] Li Z Z, Liu Z F, Liu Z R 2017 Nano Res. 10 2005
[41] Solymar L, Walsh D, Syms R R 2014 Electrical Properties of Materials (New York: Oxford University Press)
Catalog
Metrics
- Abstract views: 8962
- PDF Downloads: 525
- Cited By: 0