Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Denoising of contaminated chaotic signals based on collaborative filtering

Chen Yue Liu Xiong-Ying Wu Zhong-Tang Fan Yi Ren Zi-Liang Feng Jiu-Chao

Citation:

Denoising of contaminated chaotic signals based on collaborative filtering

Chen Yue, Liu Xiong-Ying, Wu Zhong-Tang, Fan Yi, Ren Zi-Liang, Feng Jiu-Chao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Reconstructing chaotic signals from noised data plays a critical role in many areas of science and engineering. However, the inherent features, such as aperiodic property, wide band spectrum, and extreme sensitivity to initial values, present a big challenge of reducing the noises in the contaminated chaotic signals. To address the above issues, a novel noise reduction algorithm based on the collaborative filtering is investigated in this paper. By exploiting the fractal self-similarity nature of chaotic attractors, the contaminated chaotic signals are reconstructed subsequently in three steps, i.e., grouping, collaborative filtering, and signal reconstruction. Firstly, the fragments of the noised signal are collected and sorted into different groups by mutual similarity. Secondly, each group is tackled with a hard threshold in the two-dimensional (2D) transforming domain to attenuate the noise. Lastly, an inverse transformation is adopted to estimate the noise-free fragments. As the fragments within a group are closely correlated due to their mutual similarity, the 2D transform of the group should be sparser than the one-dimensional transform of the original signal in the first step, leading to much more effective noise attenuation. The fragments collected in the grouping step may overlap each other, meaning that a signal point could be included in more than one fragment and have different collaborative filtering results. Therefore, the noise-free signal is reconstructed by averaging these collaborative filtering results point by point. The parameters of the proposed algorithm are discussed and a set of recommended parameters is given. In the simulation, the chaotic signal is generated by the Lorenz system and contaminated by addictive white Gaussian noise. The signal-to-noise ratio and the root mean square error are introduced to measure the noise reduction performance. As shown in the simulation results, the proposed algorithm has advantages over the existing chaotic signal denoising methods, such as local curve fitting, wavelet thresholding, and empirical mode decomposition iterative interval thresholding methods, in the reconstruction accuracy, improvement of the signal-to-noise ratio, and recovering quality of the phase portraits.
      Corresponding author: Liu Xiong-Ying, liuxy@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372008) and the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2015B010101006, 2014A010103014).
    [1]

    Feng J C 2012 Chaotic Signals and Information Processing (Beijing: Tsinghua University Press) pp32-35 (in Chinese) [冯久超 2012 混沌信号与信息处理 (北京: 清华大学出版社) 第3235页]

    [2]

    Badii R, Broggi G, Derighetti B, Ravani M, Ciliberto S, Politi A, Rubio M A 1988 Phys. Rev. Lett. 60 979

    [3]

    Liu X Y, Qiu S S, Lau C M 2005 J. Syst. Eng. Electron. 16 253

    [4]

    Cawley R, Hsu G H 1992 Phys. Rev. A 46 3057

    [5]

    Leontitsis A, Bountis T, Pange J 2004 Chaos 14 106

    [6]

    Han M, Liu Y H, Xi J H, Guo W 2007 IEEE Signal Proc. Lett. 14 62

    [7]

    Constantine W L B, Reinhall P G 2001 Int. J. Bifurcat. Chaos 11 483

    [8]

    Kopsinis Y, McLaughlin S 2009 IEEE Trans. Signal Proc. 57 1351

    [9]

    Wang X F, Qu J L, Gao F, Zhou Y P, Zhang Y X 2014 Acta Phys. Sin. 63 170203 (in Chinese) [王小飞, 曲建岭, 高峰, 周玉平, 张翔宇 2014 63 170203]

    [10]

    Wei X L, Lin R L, Liu S Y, Zhang C H 2016 Shock Vib. 2016 1

    [11]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 050201 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 62 050201]

    [12]

    Li G M, L S X 2015 Acta Phys. Sin. 64 160502 (in Chinese) [李广明, 吕善翔 2015 64 160502]

    [13]

    Tung W W, Gao J B, Hu J, Yang L 2011 Phys. Rev. E 83 046210

    [14]

    Wang M J, Wu Z T, Feng J C 2015 Acta Phys. Sin. 64 040503 (in Chinese) [王梦蛟, 吴中堂, 冯久超 2015 64 040503]

    [15]

    Hu J F, Zhang Y X, Yang M, Li H Y, Xia W, Li J 2016 Nonlinear Dynam. 84 1469

    [16]

    Donoho D L, Johnstone I M 1994 Biometrika 81 425

    [17]

    Dabov K, Foi A, Katkovnik V, Egiazarian K 2007 IEEE Trans. Image Proc. 16 2080

    [18]

    Lebrun M 2012 Image Proc. On Line 2 175

    [19]

    Yu S M 2011 Chaotic Systems and Chaotic Circuits (Xi'an: Xidian University Press) pp10-12 (in Chinese) [禹思敏 2011 混沌系统与混沌电路 (西安: 西安电子科技大学出版社) 第1012页]

    [20]

    He T, Zhou Z O 2007 Acta Phys. Sin. 56 693 (in Chinese) [贺涛, 周正欧 2007 56 693]

    [21]

    Tang Y F, Liu S L, Lei N, Jiang R H, Liu Y H 2012 Acta Phys. Sin. 61 170504 (in Chinese) [唐友福, 刘树林, 雷娜, 姜锐红, 刘颖慧 2012 61 170504]

    [22]

    Coifman R R, Donoho D L 1995 Lect. Notes Stat. 103 125

  • [1]

    Feng J C 2012 Chaotic Signals and Information Processing (Beijing: Tsinghua University Press) pp32-35 (in Chinese) [冯久超 2012 混沌信号与信息处理 (北京: 清华大学出版社) 第3235页]

    [2]

    Badii R, Broggi G, Derighetti B, Ravani M, Ciliberto S, Politi A, Rubio M A 1988 Phys. Rev. Lett. 60 979

    [3]

    Liu X Y, Qiu S S, Lau C M 2005 J. Syst. Eng. Electron. 16 253

    [4]

    Cawley R, Hsu G H 1992 Phys. Rev. A 46 3057

    [5]

    Leontitsis A, Bountis T, Pange J 2004 Chaos 14 106

    [6]

    Han M, Liu Y H, Xi J H, Guo W 2007 IEEE Signal Proc. Lett. 14 62

    [7]

    Constantine W L B, Reinhall P G 2001 Int. J. Bifurcat. Chaos 11 483

    [8]

    Kopsinis Y, McLaughlin S 2009 IEEE Trans. Signal Proc. 57 1351

    [9]

    Wang X F, Qu J L, Gao F, Zhou Y P, Zhang Y X 2014 Acta Phys. Sin. 63 170203 (in Chinese) [王小飞, 曲建岭, 高峰, 周玉平, 张翔宇 2014 63 170203]

    [10]

    Wei X L, Lin R L, Liu S Y, Zhang C H 2016 Shock Vib. 2016 1

    [11]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 050201 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 62 050201]

    [12]

    Li G M, L S X 2015 Acta Phys. Sin. 64 160502 (in Chinese) [李广明, 吕善翔 2015 64 160502]

    [13]

    Tung W W, Gao J B, Hu J, Yang L 2011 Phys. Rev. E 83 046210

    [14]

    Wang M J, Wu Z T, Feng J C 2015 Acta Phys. Sin. 64 040503 (in Chinese) [王梦蛟, 吴中堂, 冯久超 2015 64 040503]

    [15]

    Hu J F, Zhang Y X, Yang M, Li H Y, Xia W, Li J 2016 Nonlinear Dynam. 84 1469

    [16]

    Donoho D L, Johnstone I M 1994 Biometrika 81 425

    [17]

    Dabov K, Foi A, Katkovnik V, Egiazarian K 2007 IEEE Trans. Image Proc. 16 2080

    [18]

    Lebrun M 2012 Image Proc. On Line 2 175

    [19]

    Yu S M 2011 Chaotic Systems and Chaotic Circuits (Xi'an: Xidian University Press) pp10-12 (in Chinese) [禹思敏 2011 混沌系统与混沌电路 (西安: 西安电子科技大学出版社) 第1012页]

    [20]

    He T, Zhou Z O 2007 Acta Phys. Sin. 56 693 (in Chinese) [贺涛, 周正欧 2007 56 693]

    [21]

    Tang Y F, Liu S L, Lei N, Jiang R H, Liu Y H 2012 Acta Phys. Sin. 61 170504 (in Chinese) [唐友福, 刘树林, 雷娜, 姜锐红, 刘颖慧 2012 61 170504]

    [22]

    Coifman R R, Donoho D L 1995 Lect. Notes Stat. 103 125

  • [1] Shi Yue, Ou Pan, Zheng Ming, Tai Han-Xu, Wang Yu-Hong, Duan Ruo-Nan, Wu Jian. Artifact noise suppression of particle-field computed tomography based on lightweight residual and enhanced convergence neural network. Acta Physica Sinica, 2024, 73(10): 104202. doi: 10.7498/aps.73.20231902
    [2] Chen Song-Mao, Su Xiu-Qin, Hao Wei, Zhang Zhen-Yang, Wang Shu-Chao, Zhu Wen-Hua, Wang Jie. Noise reduction and 3D image restoration of single photon counting LiDAR using adaptive gating. Acta Physica Sinica, 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [3] Zhou Da-Fang, Zhang Shu-Lin, Jiang Shi-Qin. The method of suppressing spatial filter output noise-power gain for cardiac electrical activity imaging. Acta Physica Sinica, 2018, 67(15): 158702. doi: 10.7498/aps.67.20180294
    [4] Wang Meng-Jiao, Zhou Ze-Quan, Li Zhi-Jun, Zeng Yi-Cheng. An adaptive denoising algorithm for chaotic signals based on collaborative filtering. Acta Physica Sinica, 2018, 67(6): 060501. doi: 10.7498/aps.67.20172470
    [5] Su Li-Yun, Sun Huan-Huan, Wang Jie, Yang Li-Ming. Detection and estimation of weak pulse signal in chaotic background noise. Acta Physica Sinica, 2017, 66(9): 090503. doi: 10.7498/aps.66.090503
    [6] Li Guang-Ming, Hu Zhi-Hui. Blind chaotic signal extraction based on artificial bee colony algorithm. Acta Physica Sinica, 2016, 65(23): 230501. doi: 10.7498/aps.65.230501
    [7] Hu Jin-Feng, Zhang Ya-Xuan, Li Hui-Yong, Yang Miao, Xia Wei, Li Jun. Harmonic signal detection method from strong chaotic background based on optimal filter. Acta Physica Sinica, 2015, 64(22): 220504. doi: 10.7498/aps.64.220504
    [8] Chen Yue, Lü Shan-Xiang, Wang Meng-Jiao, Feng Jiu-Chao. A blind source separation method for chaotic signals based on artificial bee colony algorithm. Acta Physica Sinica, 2015, 64(9): 090501. doi: 10.7498/aps.64.090501
    [9] Li Guang-Ming, Lü Shan-Xiang. Chaotic signal denoising in a compressed sensing perspective. Acta Physica Sinica, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [10] Yang Dong-Dong, Ma Hong-Guang, Xu Dong-Hui, Feng Xiao-Wei. Design of the matched chaotic stimulation for fault detection of the single input single output system. Acta Physica Sinica, 2014, 63(12): 120508. doi: 10.7498/aps.63.120508
    [11] Huang Jin-Wang, Li Guang-Ming, Feng Jiu-Chao, Jin Jian-Xiu. A chaotic signal reconstruction algorithm in wireless sensor networks. Acta Physica Sinica, 2014, 63(14): 140502. doi: 10.7498/aps.63.140502
    [12] Huang Jin-Wang, Feng Jiu-Chao, Lü Shan-Xiang. Blind source separation of chaotic signals in wireless sensor networks. Acta Physica Sinica, 2014, 63(5): 050502. doi: 10.7498/aps.63.050502
    [13] Wang Wen-Bo, Zhang Xiao-Dong, Wang Xiang-Li. Chaotic signal denoising method based on independent component analysis and empirical mode decomposition. Acta Physica Sinica, 2013, 62(5): 050201. doi: 10.7498/aps.62.050201
    [14] Liu Ming, Zhang Shu-Lin, Li Hua, Qiu Yang, Zeng Jia, Zhang Guo-Feng, Wang Yong-Liang, Kong Xiang-Yan, Xie Xiao-Ming. Study of a selective averaging method for magnetocardiography-based noise suppression. Acta Physica Sinica, 2013, 62(9): 098501. doi: 10.7498/aps.62.098501
    [15] Lü Shan-Xiang, Feng Jiu-Chao. A phase space denoising method for chaotic maps. Acta Physica Sinica, 2013, 62(23): 230503. doi: 10.7498/aps.62.230503
    [16] Wang Shi-Yuan, Feng Jiu-Chao. A novel method of estimating parameter and its application to blind separation of chaotic signals. Acta Physica Sinica, 2012, 61(17): 170508. doi: 10.7498/aps.61.170508
    [17] Wang Guo-Guang, Wang Dan, He Li-Qiao. Projection filtering of signals in chaos. Acta Physica Sinica, 2010, 59(5): 3049-3056. doi: 10.7498/aps.59.3049
    [18] Chen Long, Wang De-Shi. Detection of weak square wave signals based on the chaos suppression principle with nonresonant parametric drive. Acta Physica Sinica, 2007, 56(9): 5098-5102. doi: 10.7498/aps.56.5098
    [19] You Rong-Yi, Chen Zhong, Xu Shen-Chu, Wu Bo-Xi. Study on phase-space reconstruction of chaotic signal based on wavelet transform. Acta Physica Sinica, 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [20] Li Yue, Yang Bao-Jun, Shi Yao-Wu. Chaos-based weak sinusoidal signal detection approach under colored noise background. Acta Physica Sinica, 2003, 52(3): 526-530. doi: 10.7498/aps.52.526
Metrics
  • Abstract views:  6368
  • PDF Downloads:  223
  • Cited By: 0
Publishing process
  • Received Date:  19 May 2017
  • Accepted Date:  18 June 2017
  • Published Online:  05 November 2017

/

返回文章
返回
Baidu
map