-
Since its successful preparation in 2004, graphene has attracted a great deal of attention, and the sensing application is an important research field. But nearly all the researches about graphene sensors focus on low frequency band, of which the mechanism is mainly dependent on the detection of charge carrier concentration and conductivity variation induced by the absorption of molecules. However, due to the fact that most of the molecules absorbed on the surface of graphene will induce the change of conductivity, this method is incapable of distinguishing different molecules. Transmission mode of a single molecular layer is studied based on Kubo formula and combined with a numerical method. The relation between transmission properties and effective mode index is analyzed, and the broadband localization capability of the waveguide mode is demonstrated. Meanwhile, the variation of the transmission intensity which is due to the interaction between the first order waveguide mode and the gas is adopted to retrieve the vibration spectrum of molecules. Taking the sensing of SO2, CO and C7H8 as examples, the effectiveness of this method is verified based on eigenmode analysis. Results show that the transmission spectrum is consistent with the variation spectrum of gas molecules; besides, in the transmission direction, the larger the interaction range, the greater the attenuation of mode transmission intensity will be. This study has provided a theoretical foundation for the realization of the detection and identification of gas moleculan fingerprints.
-
Keywords:
- graphene /
- transmission mode /
- vibration spectrum of moleculae /
- eigenmode analysis
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Tassin P, Koschny T, Kafesaki M, Soukoulis C M 2012 Nature Photonics 6 259
[3] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2004 Nano Letter 8 902
[4] Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V 2015 Science 347 1246501
[5] Shen J H, Zhu Y H, Yang X L, Li C Z 2012 Chem. Commun. 48 3686
[6] Zhao W, He D W, Wang Y S, Du X, Xin H 2015 Chin. Phys. B 24 047204
[7] Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101(in Chinese) [周丽, 魏源, 黄志祥, 吴先良 2015 64 018101]
[8] Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209(in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 214209]
[9] Schedin F, Geimm A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nature Materials 6 652
[10] Yoon H J, Jun D H, Yang J H, Zhou Z Z, Yang S S, Cheng M M C 2011 Sensors and Actuator B 157 310
[11] Kulkarni G S, Reddy K, Zhong Z H, Fan X H 2014 Nature Communication 5 4376
[12] Liu J B, Mendis R, Mittleman D M 2012 Physical Review B 86 241405
[13] Yu N F, Wang Q J, Kats M A, Fan J A, Khanna S P, Li L H, Davies A G, Linfield E H, Capasso F 2010 Nature Materials 9 730
[14] Yang J J, Huang M, Dai X Z, Huang M Y, Liang Y 2013 Europhysics Letters 103 44001
[15] Wu L, Chu H S, Koh W S, Li E P 2010 Optics Express 18 14395
[16] Choi S H, Kim Y L, Byun K M 2011 Optics Express 19 458
[17] Verma R, Gupta B D, Jha R 2011 Sensors and Actuators B: Chemical 160 623
[18] Wu J, Zhou C H, Yu J J, Cao H C, Li S B, Jia W 2014 Optics Laser Technology 59 99
[19] Nikitin A Y, Guinea F, Garca-Vidal F J, Martn-Moreno L 2011 Physical Review B 84 161407
[20] Francescato Y, Giannini V, Yang J J, Huang M, Maier S A 2014 ACS Photonics 1 437
[21] Francescato Y, Giannini V, Maier S A 2013 New Journal of Physics 15 063020
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Tassin P, Koschny T, Kafesaki M, Soukoulis C M 2012 Nature Photonics 6 259
[3] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2004 Nano Letter 8 902
[4] Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V 2015 Science 347 1246501
[5] Shen J H, Zhu Y H, Yang X L, Li C Z 2012 Chem. Commun. 48 3686
[6] Zhao W, He D W, Wang Y S, Du X, Xin H 2015 Chin. Phys. B 24 047204
[7] Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101(in Chinese) [周丽, 魏源, 黄志祥, 吴先良 2015 64 018101]
[8] Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209(in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 214209]
[9] Schedin F, Geimm A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nature Materials 6 652
[10] Yoon H J, Jun D H, Yang J H, Zhou Z Z, Yang S S, Cheng M M C 2011 Sensors and Actuator B 157 310
[11] Kulkarni G S, Reddy K, Zhong Z H, Fan X H 2014 Nature Communication 5 4376
[12] Liu J B, Mendis R, Mittleman D M 2012 Physical Review B 86 241405
[13] Yu N F, Wang Q J, Kats M A, Fan J A, Khanna S P, Li L H, Davies A G, Linfield E H, Capasso F 2010 Nature Materials 9 730
[14] Yang J J, Huang M, Dai X Z, Huang M Y, Liang Y 2013 Europhysics Letters 103 44001
[15] Wu L, Chu H S, Koh W S, Li E P 2010 Optics Express 18 14395
[16] Choi S H, Kim Y L, Byun K M 2011 Optics Express 19 458
[17] Verma R, Gupta B D, Jha R 2011 Sensors and Actuators B: Chemical 160 623
[18] Wu J, Zhou C H, Yu J J, Cao H C, Li S B, Jia W 2014 Optics Laser Technology 59 99
[19] Nikitin A Y, Guinea F, Garca-Vidal F J, Martn-Moreno L 2011 Physical Review B 84 161407
[20] Francescato Y, Giannini V, Yang J J, Huang M, Maier S A 2014 ACS Photonics 1 437
[21] Francescato Y, Giannini V, Maier S A 2013 New Journal of Physics 15 063020
Catalog
Metrics
- Abstract views: 5849
- PDF Downloads: 235
- Cited By: 0