搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含孔缺陷石墨烯纳米条带的电学特性研究

魏晓林 陈元平 王如志 钟建新

引用本文:
Citation:

含孔缺陷石墨烯纳米条带的电学特性研究

魏晓林, 陈元平, 王如志, 钟建新

Studies on electrical properties of graphene nanoribbons with pore defects

Wei Xiao-Lin, Chen Yuan-Ping, Wang Ru-Zhi, Zhong Jian-Xin
PDF
导出引用
  • 本文系统地研究了不同形状(三方、四方及六方) 的孔缺陷对锯齿形石墨烯纳米条带电学特性的影响. 结果表明: 孔缺陷形状对于石墨烯纳米条带的电导及电流特性影响显著, 其可能源于不同形状的孔缺陷边界对于电子散射的不同; 另外, 当缺陷悬挂吸附氢或氮原子, 将引起孔缺陷形状改变, 因此不同孔缺陷吸附对于石墨烯纳米条带的电学特性的影响也各不相同. 本研究将为石墨烯基电子器件失效分析及石墨烯孔结构器件设计提供有价值的理论指导.
    In practical applications of graphene-based electronic devices, they may have some pore defects under energetic particle bombardment, or chemical corrosion, which will inevitably affect their electrical properties. These problems have recently aroused great concern and interest. In this paper, we systematically study the influence of shape (tripartite, tetragonal and hexagonal) of hole defect on the electrical property of zigzag graphene nanoribbon (ZGNR). The results show that the influence of the shape of the pore defects on the conductance and current characteristics of ZGNRs is significant, whicl may result from electron scattering for the different shapes of the poredefect boundary. In addition, due to defects in suspension adsorbed hydrogen or nitrogen atoms, caused by defects of the pore shape changes, it also affects the electrical properties of ZGNRs. This study will supply valuable theoretical guidances for graphene-based electronic device failure analysis and the design of the graphene pore structure.
    • 基金项目: 国家自然科学基金 (批准号: 11204262)、湖南省高等学校重点实验室开放项目 (批准号: 12K045) 和湖南省科技厅计划项目 (批准号: 2012SK3166) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11204262) the Open Fund based on innovation platform of Hunan colleges and universities (Grant No. 12K045), and the Hunan Science and Technology Bureau planned project (Grant No. 2012SK3166).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Wei X L, Fang H, Wang R Z, Chen Y P, Zhong J X 2011 Appl. Phys. Lett. 99 012107

    [3]

    Zhi Y, Gao R, Hu N, Chai J, Cheng Y, Zhang L, Wei H, Kong E S-W, Zhang Y 2012 Nano-Micro Lett. 4 1

    [4]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 60 047102]

    [5]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, OuYang F P 2012 Chin. Phys. B 21 027102

    [6]

    Bhattacharya A, Bhattacharya S, Majumder C, Das G P 2010 J. Phys. Chem. C 114 10297

    [7]

    Prasongkit J, Grigoriev A, Pathak B, Ahuja R, Scheicher R H 2011 Nano Lett. 11 1941

    [8]

    Schneider G F, Kowalczyk S W, Calado V E, Pandraud G, Zandbergen H W, Vandersypen L M K, Dekker C 2010 Nano Lett. 10 3163

    [9]

    Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z T, Johnson A T C, Drndic M 2010 Nano Lett. 10 2915

    [10]

    Postma H W C 2010 Nano Lett. 10 420

    [11]

    Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A 2010 Nature 467 190

    [12]

    Yamaguchi Y,Gspann J 2002 Phys. Rev. B 66 155408

    [13]

    Czerwinski B, Samson R, Garrison B, Winograd N, Postawa Z 2006 Vacuum 81 167

    [14]

    Samela J, Nordlund K, Keinonen J, Popok V N, Campbell E E B 2007 The Euro. Phys. Jour. D 43 181

    [15]

    Inui N, Mochiji K, Moritani K 2008 Nanotechnology 19 505501

    [16]

    Wei X L, Zhang K W, Wang R Z, Liu W L, Zhong J X 2011 Journal of Nanoscience and Nanotechnology 11 10863

    [17]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806

    [18]

    Haskins J, Kinaci A, Sevik C, Sevincli H, Cuniberti G, Cagin T 2011 Acs Nano 5 3779

    [19]

    Zhang Y H, Yue L J, Han L F, Chen J L, Fang S M, Jia D Z, Li F 2011 Computational and Theoretical Chemistry 972 63

    [20]

    Hu H F, Gu L, Wang W, Jia J F, Wang Z Y 2011 Acta Phys. Sin. 60 017102 (in Chinese) [胡慧芳, 顾林, 王巍, 贾金凤, 王志勇 2011 60 017102]

    [21]

    Yao Z D, Li W, Gao X L 2012 Acta Phys. Sin. 61 117105 (in Chinese) [姚志东, 李炜, 高先龙 2012 61 117105]

    [22]

    Wei X L, Chen Y P, Liu W L, Zhong J X 2012 Phys. Lett. A 376 559

    [23]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [24]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [27]

    Stokbro K, Petersen D E, Smidstrup S, oslash, ren, Blom A, Ipsen M, Kaasbjerg K 2010 Phys. Rev. B 82 075420

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Wei X L, Fang H, Wang R Z, Chen Y P, Zhong J X 2011 Appl. Phys. Lett. 99 012107

    [3]

    Zhi Y, Gao R, Hu N, Chai J, Cheng Y, Zhang L, Wei H, Kong E S-W, Zhang Y 2012 Nano-Micro Lett. 4 1

    [4]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 60 047102]

    [5]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, OuYang F P 2012 Chin. Phys. B 21 027102

    [6]

    Bhattacharya A, Bhattacharya S, Majumder C, Das G P 2010 J. Phys. Chem. C 114 10297

    [7]

    Prasongkit J, Grigoriev A, Pathak B, Ahuja R, Scheicher R H 2011 Nano Lett. 11 1941

    [8]

    Schneider G F, Kowalczyk S W, Calado V E, Pandraud G, Zandbergen H W, Vandersypen L M K, Dekker C 2010 Nano Lett. 10 3163

    [9]

    Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z T, Johnson A T C, Drndic M 2010 Nano Lett. 10 2915

    [10]

    Postma H W C 2010 Nano Lett. 10 420

    [11]

    Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A 2010 Nature 467 190

    [12]

    Yamaguchi Y,Gspann J 2002 Phys. Rev. B 66 155408

    [13]

    Czerwinski B, Samson R, Garrison B, Winograd N, Postawa Z 2006 Vacuum 81 167

    [14]

    Samela J, Nordlund K, Keinonen J, Popok V N, Campbell E E B 2007 The Euro. Phys. Jour. D 43 181

    [15]

    Inui N, Mochiji K, Moritani K 2008 Nanotechnology 19 505501

    [16]

    Wei X L, Zhang K W, Wang R Z, Liu W L, Zhong J X 2011 Journal of Nanoscience and Nanotechnology 11 10863

    [17]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806

    [18]

    Haskins J, Kinaci A, Sevik C, Sevincli H, Cuniberti G, Cagin T 2011 Acs Nano 5 3779

    [19]

    Zhang Y H, Yue L J, Han L F, Chen J L, Fang S M, Jia D Z, Li F 2011 Computational and Theoretical Chemistry 972 63

    [20]

    Hu H F, Gu L, Wang W, Jia J F, Wang Z Y 2011 Acta Phys. Sin. 60 017102 (in Chinese) [胡慧芳, 顾林, 王巍, 贾金凤, 王志勇 2011 60 017102]

    [21]

    Yao Z D, Li W, Gao X L 2012 Acta Phys. Sin. 61 117105 (in Chinese) [姚志东, 李炜, 高先龙 2012 61 117105]

    [22]

    Wei X L, Chen Y P, Liu W L, Zhong J X 2012 Phys. Lett. A 376 559

    [23]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [24]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [27]

    Stokbro K, Petersen D E, Smidstrup S, oslash, ren, Blom A, Ipsen M, Kaasbjerg K 2010 Phys. Rev. B 82 075420

  • [1] 崔磊, 刘洪梅, 任重丹, 杨柳, 田宏玉, 汪萨克. 石墨烯线缺陷局域形变对谷输运性质的影响.  , 2023, 72(16): 166101. doi: 10.7498/aps.72.20230736
    [2] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟.  , 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [3] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性.  , 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [4] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性.  , 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [5] 李亮亮, 孟凡伟, 邹鲲, 黄瑶, 彭倚天. 悬浮石墨烯摩擦特性.  , 2021, 70(8): 086801. doi: 10.7498/aps.70.20201796
    [6] 卫琳, 刘贵立, 王家鑫, 穆光耀, 张国英. 拉伸形变及电场作用对黑磷烯吸附Si原子电学特性影响的密度泛函理论研究.  , 2021, 70(21): 216301. doi: 10.7498/aps.70.20210812
    [7] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响.  , 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [8] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管.  , 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [9] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究.  , 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [10] 刘贵立, 杨忠华. 变形及电场作用对石墨烯电学特性影响的第一性原理计算.  , 2018, 67(7): 076301. doi: 10.7498/aps.67.20172491
    [11] 李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波. 石墨烯沟道全自旋逻辑器件开关特性.  , 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [12] 张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明. 石墨烯纳米带的制备与电学特性调控.  , 2017, 66(21): 218103. doi: 10.7498/aps.66.218103
    [13] 毕卫红, 王圆圆, 付广伟, 王晓愚, 李彩丽. 基于石墨烯涂覆空心光纤电光调制特性的研究.  , 2016, 65(4): 047801. doi: 10.7498/aps.65.047801
    [14] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性.  , 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [15] 禹忠, 党忠, 柯熙政, 崔真. N/B掺杂石墨烯的光学与电学性质.  , 2016, 65(24): 248103. doi: 10.7498/aps.65.248103
    [16] 许杰, 周丽, 黄志祥, 吴先良. 含石墨烯临界耦合谐振器的吸收特性研究.  , 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [17] 杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭. 单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究.  , 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [18] 周丽, 魏源, 黄志祥, 吴先良. 基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性.  , 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [19] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究.  , 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [20] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究.  , 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
计量
  • 文章访问数:  7056
  • PDF下载量:  1442
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-29
  • 修回日期:  2012-10-24
  • 刊出日期:  2013-03-05

/

返回文章
返回
Baidu
map