搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼膜制备工艺、微观结构及其在硼化镁超导约瑟夫森结中的应用

王松 王星云 周章渝 杨发顺 杨健 傅兴华

引用本文:
Citation:

硼膜制备工艺、微观结构及其在硼化镁超导约瑟夫森结中的应用

王松, 王星云, 周章渝, 杨发顺, 杨健, 傅兴华

Preparation, microstructure of B film and its applications in MgB2 superconducting Josephson junction

Wang Song, Wang Xing-Yun, Zhou Zhang-Yu, Yang Fa-Shun, Yang Jian, Fu Xing-Hua
PDF
导出引用
  • MgB2材料具备临界转变温度较高、相干长度大、临界电流和临界磁场高等优点, 被认为有替代Nb基超导材料的潜力. 研究了不同温度下以化学气相沉积法制备的硼(B)薄膜的微观结构. 实验结果表明: 较低温度沉积的B先驱薄膜为无定形B膜, 可以与Mg蒸气反应生成MgB2超导薄膜; 当沉积温度高于550 ℃时, 所得硼薄膜为晶型薄膜; 以晶型硼薄膜为先驱膜在镁蒸气中退火, 不能生成硼化镁超导薄膜. 利用晶型B膜的这一特点, 成功制备了以晶型硼薄膜为介质层的硼化镁超导约瑟夫森结.
    Magnesium diboride is a binary compound with a simple AlB2 type crystal structure and a high-Tc (nearly 40 K) superconductor. The rather high Tc value and the specific properties make it a potential material for electronic applications. The key structure for the application is a Josephson junction. The growth of tri-layer structure consisting of MgB2 film and tunneling barrier layer is a key technology for a Josephson junction. Boron is a kind of good insulating medium. Preparation of MgB2/B/MgB2 tri-layer structures by chemical vapor deposition (CVD) method is investigated. The experimental results indicate that the depositing temperature will influence the microstructure of boron film significantly and different crystal structures of boron films are obtained at different temperatures.The boron film is an amorphous film while the deposition temperature is lower than 500 ℃, and the amorphous B film can be transformed into MgB2 superconducting film by annealing in Mg vapor. For precursor B films deposited at 470 ℃ and 500 ℃, the critical temperatures of the relevant MgB2 films are 39.8 K and 38.5 K, respectively. As the deposition temperature is higher than 550 ℃, the boron film becomes crystallized, and increasing deposition temperature will increase the crystallinity of the B film as can be seen from the samples deposited at 550 ℃, 600 ℃, 650 ℃ and 680 ℃. The boron film turns out to be of -phase crystalline texture, which is verified by X-ray diffraction and scanning electron microscope. What is more, the crystalline boron film is a kind of inert film, and it does not react with Mg in Mg vapor, thus it cannot be transformed into superconducting film in the subsequent annealing steps. By utilizing the property of the crystallized boron film, a square-shaped Josephson junction with a size 100 m100 m of MgB2/B/MgB2 structure is prepared. The thickness of boron dielectric layer is about 10 nm, and the DC Josephson effect is observed by the I-V measurement of the junction. Compared with other tri-layer structure based on MgB2 material, such as the MgB2/MgO/MgB2, the structure in which B film serves as a barrier layer eliminates the oxygen and can be fabricated in-situ easily by CVD method, and reliable Josephson junctions can be expected by such a technology.
      通信作者: 傅兴华, fxh@gzu.edu.cn
    • 基金项目: 贵州省科学技术基金(批准号: 黔科合J字2012-2129号)资助的课题.
      Corresponding author: Fu Xing-Hua, fxh@gzu.edu.cn
    • Funds: Project supported by the Science and Technology Foundation of Guizhou Province, China (Grant No. 2012-2129).
    [1]

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63

    [2]

    Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011 60 087401]

    [3]

    Luo F, Fu M, Ji G F, Chen X R 2010 Chin. Phys. B 19 027101

    [4]

    Greenwood N N, Earnshaw A 1997 Chemistry of the Elements (2nd Ed.) (Oxford, London, Butterworth: Heinemann Press) p145

    [5]

    Emin D 1987 Phys. Today 40 55

    [6]

    Masago A, Shirai K, Katayama-Yoshida H 2006 Phys. Rev. B 73 104102

    [7]

    Artem R O, Chen J H, Carlo Gatti, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863

    [8]

    Sanz D N, Loubeyre P, Mezouar M 2002 Phys. Rev. Lett. 89 245501

    [9]

    Zarechnaya E Y, Dubrovinsky L, Dubrovinskaia N, Filinchuk Y, Chernyshov D, Dmitriev V, Miyajima N, El Goresy A, Braun H F, van Smaalen S, Kantor I, Kantor A, Prakapenka V, Hanfland M, Mikhaylushkin A S, Abrikosov I A, Simak S I 2009 Phys. Rev. Lett. 102 185501

    [10]

    Wang D S, Fu X H, Zhang Z P, Yang J 2002 Chin. Phys. Lett. 19 1179

    [11]

    Fu X H, Wang D S, Zhang Z P, Yang J 2001 Physica C 377 407

    [12]

    Yang J, Wang S, Yang F S, Zhang Z P, Ding Z, Fu X H 2007 Physica C 467 1

    [13]

    Zhou Z Y, Wang S,Yang F S, Yang J, Fu X H 2012 Chin. J. Low Temp. Phys. 34 441 (in Chinese) [周章渝, 王松, 杨发顺, 杨健, 傅兴华 2012 低温 34 441]

    [14]

    Zhou Z Y, Yang F S, Wang S, Yang J, Fu X H 2013 J. Funct. Mater. 4 893 (in Chinese) [周章渝, 杨发顺, 王松, 杨健, 傅兴华 2013 功能材料 4 893]

    [15]

    Chen K, Zhuang C G, Li Q, Weng X, Redwing J M, Zhu Y, Voyles P M, Xi X X 2011 IEEE Trans. Appl. Supercond. 21 115

  • [1]

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63

    [2]

    Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011 60 087401]

    [3]

    Luo F, Fu M, Ji G F, Chen X R 2010 Chin. Phys. B 19 027101

    [4]

    Greenwood N N, Earnshaw A 1997 Chemistry of the Elements (2nd Ed.) (Oxford, London, Butterworth: Heinemann Press) p145

    [5]

    Emin D 1987 Phys. Today 40 55

    [6]

    Masago A, Shirai K, Katayama-Yoshida H 2006 Phys. Rev. B 73 104102

    [7]

    Artem R O, Chen J H, Carlo Gatti, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863

    [8]

    Sanz D N, Loubeyre P, Mezouar M 2002 Phys. Rev. Lett. 89 245501

    [9]

    Zarechnaya E Y, Dubrovinsky L, Dubrovinskaia N, Filinchuk Y, Chernyshov D, Dmitriev V, Miyajima N, El Goresy A, Braun H F, van Smaalen S, Kantor I, Kantor A, Prakapenka V, Hanfland M, Mikhaylushkin A S, Abrikosov I A, Simak S I 2009 Phys. Rev. Lett. 102 185501

    [10]

    Wang D S, Fu X H, Zhang Z P, Yang J 2002 Chin. Phys. Lett. 19 1179

    [11]

    Fu X H, Wang D S, Zhang Z P, Yang J 2001 Physica C 377 407

    [12]

    Yang J, Wang S, Yang F S, Zhang Z P, Ding Z, Fu X H 2007 Physica C 467 1

    [13]

    Zhou Z Y, Wang S,Yang F S, Yang J, Fu X H 2012 Chin. J. Low Temp. Phys. 34 441 (in Chinese) [周章渝, 王松, 杨发顺, 杨健, 傅兴华 2012 低温 34 441]

    [14]

    Zhou Z Y, Yang F S, Wang S, Yang J, Fu X H 2013 J. Funct. Mater. 4 893 (in Chinese) [周章渝, 杨发顺, 王松, 杨健, 傅兴华 2013 功能材料 4 893]

    [15]

    Chen K, Zhuang C G, Li Q, Weng X, Redwing J M, Zhu Y, Voyles P M, Xi X X 2011 IEEE Trans. Appl. Supercond. 21 115

  • [1] 李中祥, 王淑亚, 黄自强, 王晨, 穆清. 原子级控制的约瑟夫森结中Al2O3势垒层制备工艺.  , 2022, 71(21): 218102. doi: 10.7498/aps.71.20220820
    [2] 韩金舸, 欧阳鹏辉, 李恩平, 王轶文, 韦联福. 超导约瑟夫森结物理参数的实验推算.  , 2021, 70(17): 170304. doi: 10.7498/aps.70.20210393
    [3] 陈恒杰, 薛航, 李邵雄, 王镇. 一种通过约瑟夫森结非线性频率响应确定微波耗散的方法.  , 2019, 68(11): 118501. doi: 10.7498/aps.68.20190167
    [4] 周章渝, 肖寒, 王松, 傅兴华, 闫江. MgB2/B/MgB2约瑟夫森结的制备与直流特性.  , 2016, 65(18): 180301. doi: 10.7498/aps.65.180301
    [5] 陈钊, 何根芳, 张青雅, 刘建设, 李铁夫, 陈炜. 具有Washer型输入线圈的超导量子干涉放大器的制备与表征.  , 2015, 64(12): 128501. doi: 10.7498/aps.64.128501
    [6] 曹文会, 李劲劲, 钟青, 郭小玮, 贺青, 迟宗涛. 用于电压基准的Nb/NbxSi1-x/Nb约瑟夫森单结的研制.  , 2012, 61(17): 170304. doi: 10.7498/aps.61.170304
    [7] 张立森, 蔡理, 冯朝文. 约瑟夫森结中周期解及其稳定性的解析分析.  , 2011, 60(3): 030308. doi: 10.7498/aps.60.030308
    [8] 岳宏卫, 阎少林, 周铁戈, 谢清连, 游峰, 王争, 何明, 赵新杰, 方兰, 杨扬, 王福音, 陶薇薇. 嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结的毫米波辐照特性研究.  , 2010, 59(2): 1282-1287. doi: 10.7498/aps.59.1282
    [9] 岳宏卫, 王争, 樊彬, 宋凤斌, 游峰, 赵新杰, 何明, 方兰, 阎少林. 高温超导双晶约瑟夫森结阵列毫米波相干辐射.  , 2010, 59(8): 5755-5758. doi: 10.7498/aps.59.5755
    [10] 孙辉辉, 杨烨, 王磊, Cheng C. H., 冯勇, 赵勇. 柠檬酸掺杂的MgB2超导体钉扎机理的研究.  , 2010, 59(5): 3488-3493. doi: 10.7498/aps.59.3488
    [11] 韩晓琴, 蒋利娟, 刘玉芳. MgB和MgB2(1A1)的结构与解析势能函数.  , 2010, 59(7): 4542-4546. doi: 10.7498/aps.59.4542
    [12] 阮文, 胡强林, 谢安东, 余晓光, 罗文浪, 朱正和. 基态MgB2分子的结构与分析势能函数.  , 2009, 58(12): 8188-8193. doi: 10.7498/aps.58.8188
    [13] 崔大健, 林德华, 于海峰, 彭智慧, 朱晓波, 郑东宁, 景秀年, 吕 力, 赵士平. 本征约瑟夫森结跳变电流分布的量子修正.  , 2008, 57(9): 5933-5936. doi: 10.7498/aps.57.5933
    [14] 肖宇飞, 王登龙, 王凤姣, 颜晓红. 非对称的玻色-爱因斯坦凝聚中的约瑟夫森结的动力学性质.  , 2006, 55(2): 547-550. doi: 10.7498/aps.55.547
    [15] 陈荣华, 朱明原, 李 瑛, 李文献, 金红明, 窦士学. 脉冲磁场处理对碳纳米管掺杂MgB2线材临界电流密度的影响.  , 2006, 55(9): 4878-4882. doi: 10.7498/aps.55.4878
    [16] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 樊 荣, 陈仙辉, 曹烈兆. 双能隙超导体MgB2的热导.  , 2003, 52(3): 683-686. doi: 10.7498/aps.52.683
    [17] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 陈仙辉, 曹烈兆. MgB2混合态热导率的反常增强.  , 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
    [18] 吴柏枚, 李 波, 杨东升, 郑卫华, 李世燕, 曹烈兆, 陈仙辉. 新型超导体MgB2和MgCNi3热、电输运性质研究.  , 2003, 52(12): 3150-3154. doi: 10.7498/aps.52.3150
    [19] 张杰, 雒建林, 白海洋, 陈兆甲, 林德华, 车广灿, 任治安, 赵忠贤, 金铎. 常压和高压合成MgB2的低温比热及两个超导能隙研究.  , 2002, 51(2): 342-346. doi: 10.7498/aps.51.342
    [20] 王震宇, 廖红印, 周世平. 直流偏置的与RLC谐振器耦合的约瑟夫森结动力学行为的数值模拟.  , 2001, 50(10): 1996-2000. doi: 10.7498/aps.50.1996
计量
  • 文章访问数:  6690
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-04
  • 修回日期:  2015-10-19
  • 刊出日期:  2016-01-05

/

返回文章
返回
Baidu
map