Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tuning the electronic and magnetic property of semihydrogenated graphene and monolayer boron nitride heterostructure

Gao Tan-Hua Zheng Fu-Chang Wang Xiao-Chun

Citation:

Tuning the electronic and magnetic property of semihydrogenated graphene and monolayer boron nitride heterostructure

Gao Tan-Hua, Zheng Fu-Chang, Wang Xiao-Chun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The structural stability, electronic and magnetic properties of semihydrogenated graphene and monolayer boron nitride (H-Gra@BN) composite system are studied by the first principles calculation. First, for the six possible stacked configurations of H-Gra@BN in three kinds of magnetic coupling manners, including the nonmagnetic, ferromagnetic and antiferromagnetic, the geometry optimization structures are calculated. The formation energies (Ef) are -28, -37, -40, -35, -28, and -34 meV/atom for AA-B, AA-N, AB-B, AB-B-H, AB-N and AB-N-H configurations of H-Gra@BN, respectively. The details of the six H-Gra@BN configurations are presented. The results show that the AB-B configuration of H-Gra@BN system is most stable with the largest formation energy in the six configurations. Its thickness is the smallest in all six configurations. The formation energies of all configurations are very close to each other and show that the combination of the interlayer between layers is very weak, The interaction between H-Gra and monolayer BN is van der Waals binding. Second, the band structure, total density of states (TDOS), partial density of states and polarization charge density of the most stable H-Gra@BN system are systematically analyzed. This material is ferromagnetic semiconductor. The band gaps for majority and minority spin electrons are 3.097 eV and 1.798 eV, respectively. Each physical cell has an about 1 μB magnetic moment, which is mainly derived from the contribution of the unhydrogenated C2 atom. Furthermore, while the pressure is applied along the z direction, we analyze the TDOS and band structure of H-Gra@BN system, and find that when the z axis strain is more than -10.48% (Δh=-0.45 Å), the valence band maximum of minority spin moves down. The conduction band minimum of minority spin moves from the high symmetry Γ position into a position between Γ and K. The electronic properties of the most stable H-Gra@BN system change from magnetic semiconductor into half metal. When the strain is increased by more than -11.65% (Δh=-0.5 Å), the most stable H-Gra@BN changes into a nonmagnetic metal. To analyze the effect caused by different strains, we analyze the difference in three-dimensional charge density, and find that with the decrease of the layer spacing, the interlayer interaction gradually increases and shows the obvious covalent bond characteristics. This paper predicts a new type of two-dimensional material of which the electronic and magnetic properties can be easily tuned by pressure, and it is expected to be used in nano-devices and serve as an intelligent building material.
      Corresponding author: Wang Xiao-Chun, wangxiaochun@jlu.edu.cn
    • Funds: Project supported by the Introduction of Advanced Talent Research Project of Wuyi University, China (Grant No. JSGC05) and the Natural Science Foundation of Jilin Province of China (Grant No. 20170101154JC).
    [1]

    Makarova T L, Sundqvist B, Hohne R, Esqulnazl P, Kopelevich K, Scharff P, Davydov V A, Kahsevarova L A, Rakhmanina A V 2001 Nature 413 716

    [2]

    Shibayama Y, Sato H, Enoki T, Endo M 2000 Phys. Rev. Lett. 84 1744

    [3]

    Yang K S, Wu R, Shen L, Feng Y P, Dai Y, Huang B B 2010 Phys. Rev. B 81 125211

    [4]

    Ma Y D, Dai Y, Huang B B 2011 Comput. Mater. Sci. 50 1661

    [5]

    Attema J J, de Wijs G A, Blake G R, de Groot R A 2005 J. Am. Chem. Soc. 127 16325

    [6]

    Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867

    [7]

    Zhang P, Li X D, Hu C H, Wu S Q, Zhu Z Z 2012 Phys. Lett. A 376 1230

    [8]

    Gao T H 2014 Acta Phys. Sin. 63 046102 (in Chinese) [高潭华 2014 63 046102]

    [9]

    Xu L, Dai Z H, Sui P F, Wang W T, Sun Y M 2014 Acta Phys. Sin. 63 186101 (in Chinese) [徐雷, 戴振宏, 隋鹏飞, 王伟田, 孙玉明 2014 63 186101]

    [10]

    Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301

    [11]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610

    [12]

    Haberer D, Vyalikh D V, Taioli S, Dora B, Farjam M, Fink J, Marchenko D, Pichler T, Ziegler O K, Simonucci S, Dresselhaus M S, Knupfer M, Bchner B, Grneis A 2010 Nano Lett. 10 3360

    [13]

    Meyer J C, Chuvilin A, Algara S G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683

    [14]

    Zhi C Y, Bando Y, Tang C C, Kuwahara H, Golberg D 2009 Adv. Mater. 21 2889

    [15]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone N J 2010 Nanotechnology 5 722

    [16]

    Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291

    [17]

    Sachs B, Wehling T O, Katsnelson M I, Lichtenstein A I 2011 Phys. Rev. B 84 195414

    [18]

    Song J C W, Shytov A V, Levitov L S 2013 Phys. Rev. Lett. 111 266801

    [19]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [20]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 6139

    [21]

    Mucha K M, Wallbank J R, Fal’Ko V I 2013 Phys. Rev. B 88 205418

    [22]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha K M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’Ko V I, Geim A K 2013 Nature 497 594

    [23]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103

    [24]

    Chen Q L, Dai Z H, Liu Z Q, An Y F, Liu Y L 2016 Acta Phys. Sin. 65 136101 (in Chinese) [陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林 2016 65 136101]

    [25]

    Kharche N, Nayak S K 2011 Nano Lett. 11 5274

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [29]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [30]

    Grimme S 2006 Comput. Chem. 27 1787

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Feynman R P 1939 Phys. Rev. 56 340

    [34]

    Meyer J, Chuvilin A, Algara S G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683

  • [1]

    Makarova T L, Sundqvist B, Hohne R, Esqulnazl P, Kopelevich K, Scharff P, Davydov V A, Kahsevarova L A, Rakhmanina A V 2001 Nature 413 716

    [2]

    Shibayama Y, Sato H, Enoki T, Endo M 2000 Phys. Rev. Lett. 84 1744

    [3]

    Yang K S, Wu R, Shen L, Feng Y P, Dai Y, Huang B B 2010 Phys. Rev. B 81 125211

    [4]

    Ma Y D, Dai Y, Huang B B 2011 Comput. Mater. Sci. 50 1661

    [5]

    Attema J J, de Wijs G A, Blake G R, de Groot R A 2005 J. Am. Chem. Soc. 127 16325

    [6]

    Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867

    [7]

    Zhang P, Li X D, Hu C H, Wu S Q, Zhu Z Z 2012 Phys. Lett. A 376 1230

    [8]

    Gao T H 2014 Acta Phys. Sin. 63 046102 (in Chinese) [高潭华 2014 63 046102]

    [9]

    Xu L, Dai Z H, Sui P F, Wang W T, Sun Y M 2014 Acta Phys. Sin. 63 186101 (in Chinese) [徐雷, 戴振宏, 隋鹏飞, 王伟田, 孙玉明 2014 63 186101]

    [10]

    Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301

    [11]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610

    [12]

    Haberer D, Vyalikh D V, Taioli S, Dora B, Farjam M, Fink J, Marchenko D, Pichler T, Ziegler O K, Simonucci S, Dresselhaus M S, Knupfer M, Bchner B, Grneis A 2010 Nano Lett. 10 3360

    [13]

    Meyer J C, Chuvilin A, Algara S G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683

    [14]

    Zhi C Y, Bando Y, Tang C C, Kuwahara H, Golberg D 2009 Adv. Mater. 21 2889

    [15]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone N J 2010 Nanotechnology 5 722

    [16]

    Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291

    [17]

    Sachs B, Wehling T O, Katsnelson M I, Lichtenstein A I 2011 Phys. Rev. B 84 195414

    [18]

    Song J C W, Shytov A V, Levitov L S 2013 Phys. Rev. Lett. 111 266801

    [19]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [20]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 6139

    [21]

    Mucha K M, Wallbank J R, Fal’Ko V I 2013 Phys. Rev. B 88 205418

    [22]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha K M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’Ko V I, Geim A K 2013 Nature 497 594

    [23]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103

    [24]

    Chen Q L, Dai Z H, Liu Z Q, An Y F, Liu Y L 2016 Acta Phys. Sin. 65 136101 (in Chinese) [陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林 2016 65 136101]

    [25]

    Kharche N, Nayak S K 2011 Nano Lett. 11 5274

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [29]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [30]

    Grimme S 2006 Comput. Chem. 27 1787

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Feynman R P 1939 Phys. Rev. 56 340

    [34]

    Meyer J, Chuvilin A, Algara S G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683

  • [1] Liu Dong-Jing, Zhou Fu, Hu Zhi-Liang, Huang Jia-Qiang. Molecular dynamics study of interfacial thermal transport properties of graphene/GaN heterostructure. Acta Physica Sinica, 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [2] Peng Shu-Ping, Huang Xu-Dong, Liu Qian, Ren Peng, Wu Dan, Fan Zhi-Qiang. First-principles study of single-molecule-structure determination of dithienoborepin isomers. Acta Physica Sinica, 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [3] Gong Ling-Yun, Zhang Ping, Chen qian, Lou Zhi-Hao, Xu Jie, Gao Feng. First principles study of structure and property of Nb5+-doped SrTiO3. Acta Physica Sinica, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [4] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [5] Wu Min, Fei Hong-Ming, Lin Han, Zhao Xiao-Dan, Yang Yi-Biao, Chen Zhi-Hui. Design of asymmetric transmission of photonic crystal heterostructure based on two-dimensional hexagonal boron nitride material. Acta Physica Sinica, 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [6] Zou Jun-Hui, Zhang Juan. Photonic bandgap compensation and extension for hybrid quasiperiodic heterostructures. Acta Physica Sinica, 2016, 65(1): 014214. doi: 10.7498/aps.65.014214
    [7] Zhao Li-Kai, Zhao Er-Jun, Wu Zhi-Jian. First-principles calculations of structural thermodynamic and mechanical properties of 5d transitional metal diborides. Acta Physica Sinica, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [8] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [9] Li Guo-Qi, Zhang Xiao-Chao, Ding Guang-Yue, Fan Cai-Mei, Liang Zhen-Hai, Han Pei-De. Study on the atomic and electronic structures of BiOCl{001} surface using first principles. Acta Physica Sinica, 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [10] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [11] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [12] Ri Chung-Ho, Li Lin, Qi Yang. Electronic structures and dielectric properties of BaCoxZn2-xFe16O27 from first principles. Acta Physica Sinica, 2012, 61(20): 207102. doi: 10.7498/aps.61.207102
    [13] Wu Jiang-Bin, Qian Yao, Guo Xiao-Jie, Cui Xian-Hui, Miao Ling, Jiang Jian-Jun. First-principles study on the Li-storage performance of silicon clusters and graphene composite structure. Acta Physica Sinica, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [14] Nie Zhao-Xiu, Wang Feng, Cheng Zhi-Mei, Wang Xin-Qiang, Lu Li-Ya, Liu Gao-Bin, Duan Zhuang-Fen. First-principles study on electronic structure and half-metallicferromagnetism of ternary compound ZnCrS. Acta Physica Sinica, 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [15] Ri Chung-Ho, Li Lin, Zhu Lin. First-principles study of the electronic structure and electric conductivity in W-type hexagonal ferrite BaFe18O27. Acta Physica Sinica, 2011, 60(10): 107102. doi: 10.7498/aps.60.107102
    [16] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [17] Ye Tao, Xu Xu-Ming. The design and optimization of high efficiency heterostructure four-wavelength wavelength division multiplexing. Acta Physica Sinica, 2010, 59(9): 6273-6278. doi: 10.7498/aps.59.6273
    [18] Yang Chong, Yang Chun. First-principles study of atomic and electronic structures of the silicon oxide clusters on Si(001) surfaces. Acta Physica Sinica, 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [19] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] WANG HUA, YU JUN, DONG XIAO-MIN, WANG YUN-BO, ZHOU WEN-LI, ZHAO JIAN-HONG, ZHOU DONG-XIANG. PREPARATION AND CHARACTERIZATION OF THE Au/PZT/BIT/p-Si HETEROSTRUCTURE . Acta Physica Sinica, 2001, 50(5): 981-985. doi: 10.7498/aps.50.981
Metrics
  • Abstract views:  5653
  • PDF Downloads:  149
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2018
  • Accepted Date:  22 May 2018
  • Published Online:  20 August 2019

/

返回文章
返回
Baidu
map