搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半氢化石墨烯与单层氮化硼复合体系的电子结构和磁性的调控

高潭华 郑福昌 王晓春

引用本文:
Citation:

半氢化石墨烯与单层氮化硼复合体系的电子结构和磁性的调控

高潭华, 郑福昌, 王晓春

Tuning the electronic and magnetic property of semihydrogenated graphene and monolayer boron nitride heterostructure

Gao Tan-Hua, Zheng Fu-Chang, Wang Xiao-Chun
PDF
导出引用
  • 采用密度泛函理论第一性原理的PBE-D2方法,对半氢化石墨烯与单层氮化硼(H-Gra@BN)复合体系的结构稳定性、电子性质和磁性进行了系统的研究.计算了六种可能的堆叠方式,结果表明:H-Gra@BN体系的AB-B构型是最稳定的,为铁磁性半导体,上、下自旋的带隙分别为3.097和1.798 eV;每个物理学原胞具有约1 μB的磁矩,该磁矩主要来源于由未氢化的C2原子的贡献;在z轴方向压应力的作用下,最稳的H-Gra@BN体系的电子性质由磁性半导体转变为半金属,再转变为非磁性金属;预测了一种能方便地通过应力调控电子性质和磁性质的新型材料,有望应用在纳米器件以及智能建筑材料等领域.
    The structural stability, electronic and magnetic properties of semihydrogenated graphene and monolayer boron nitride (H-Gra@BN) composite system are studied by the first principles calculation. First, for the six possible stacked configurations of H-Gra@BN in three kinds of magnetic coupling manners, including the nonmagnetic, ferromagnetic and antiferromagnetic, the geometry optimization structures are calculated. The formation energies (Ef) are -28, -37, -40, -35, -28, and -34 meV/atom for AA-B, AA-N, AB-B, AB-B-H, AB-N and AB-N-H configurations of H-Gra@BN, respectively. The details of the six H-Gra@BN configurations are presented. The results show that the AB-B configuration of H-Gra@BN system is most stable with the largest formation energy in the six configurations. Its thickness is the smallest in all six configurations. The formation energies of all configurations are very close to each other and show that the combination of the interlayer between layers is very weak, The interaction between H-Gra and monolayer BN is van der Waals binding. Second, the band structure, total density of states (TDOS), partial density of states and polarization charge density of the most stable H-Gra@BN system are systematically analyzed. This material is ferromagnetic semiconductor. The band gaps for majority and minority spin electrons are 3.097 eV and 1.798 eV, respectively. Each physical cell has an about 1 μB magnetic moment, which is mainly derived from the contribution of the unhydrogenated C2 atom. Furthermore, while the pressure is applied along the z direction, we analyze the TDOS and band structure of H-Gra@BN system, and find that when the z axis strain is more than -10.48% (Δh=-0.45 Å), the valence band maximum of minority spin moves down. The conduction band minimum of minority spin moves from the high symmetry Γ position into a position between Γ and K. The electronic properties of the most stable H-Gra@BN system change from magnetic semiconductor into half metal. When the strain is increased by more than -11.65% (Δh=-0.5 Å), the most stable H-Gra@BN changes into a nonmagnetic metal. To analyze the effect caused by different strains, we analyze the difference in three-dimensional charge density, and find that with the decrease of the layer spacing, the interlayer interaction gradually increases and shows the obvious covalent bond characteristics. This paper predicts a new type of two-dimensional material of which the electronic and magnetic properties can be easily tuned by pressure, and it is expected to be used in nano-devices and serve as an intelligent building material.
      通信作者: 王晓春, wangxiaochun@jlu.edu.cn
    • 基金项目: 武夷学院高级引进人才科研启动项目(批准号:JSGC05)和吉林省自然科学基金(批准号:20170101154jc)资助的课题.
      Corresponding author: Wang Xiao-Chun, wangxiaochun@jlu.edu.cn
    • Funds: Project supported by the Introduction of Advanced Talent Research Project of Wuyi University, China (Grant No. JSGC05) and the Natural Science Foundation of Jilin Province of China (Grant No. 20170101154JC).
    [1]

    Makarova T L, Sundqvist B, Hohne R, Esqulnazl P, Kopelevich K, Scharff P, Davydov V A, Kahsevarova L A, Rakhmanina A V 2001 Nature 413 716

    [2]

    Shibayama Y, Sato H, Enoki T, Endo M 2000 Phys. Rev. Lett. 84 1744

    [3]

    Yang K S, Wu R, Shen L, Feng Y P, Dai Y, Huang B B 2010 Phys. Rev. B 81 125211

    [4]

    Ma Y D, Dai Y, Huang B B 2011 Comput. Mater. Sci. 50 1661

    [5]

    Attema J J, de Wijs G A, Blake G R, de Groot R A 2005 J. Am. Chem. Soc. 127 16325

    [6]

    Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867

    [7]

    Zhang P, Li X D, Hu C H, Wu S Q, Zhu Z Z 2012 Phys. Lett. A 376 1230

    [8]

    Gao T H 2014 Acta Phys. Sin. 63 046102 (in Chinese) [高潭华 2014 63 046102]

    [9]

    Xu L, Dai Z H, Sui P F, Wang W T, Sun Y M 2014 Acta Phys. Sin. 63 186101 (in Chinese) [徐雷, 戴振宏, 隋鹏飞, 王伟田, 孙玉明 2014 63 186101]

    [10]

    Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301

    [11]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610

    [12]

    Haberer D, Vyalikh D V, Taioli S, Dora B, Farjam M, Fink J, Marchenko D, Pichler T, Ziegler O K, Simonucci S, Dresselhaus M S, Knupfer M, Bchner B, Grneis A 2010 Nano Lett. 10 3360

    [13]

    Meyer J C, Chuvilin A, Algara S G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683

    [14]

    Zhi C Y, Bando Y, Tang C C, Kuwahara H, Golberg D 2009 Adv. Mater. 21 2889

    [15]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone N J 2010 Nanotechnology 5 722

    [16]

    Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291

    [17]

    Sachs B, Wehling T O, Katsnelson M I, Lichtenstein A I 2011 Phys. Rev. B 84 195414

    [18]

    Song J C W, Shytov A V, Levitov L S 2013 Phys. Rev. Lett. 111 266801

    [19]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [20]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 6139

    [21]

    Mucha K M, Wallbank J R, Fal’Ko V I 2013 Phys. Rev. B 88 205418

    [22]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha K M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’Ko V I, Geim A K 2013 Nature 497 594

    [23]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103

    [24]

    Chen Q L, Dai Z H, Liu Z Q, An Y F, Liu Y L 2016 Acta Phys. Sin. 65 136101 (in Chinese) [陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林 2016 65 136101]

    [25]

    Kharche N, Nayak S K 2011 Nano Lett. 11 5274

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [29]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [30]

    Grimme S 2006 Comput. Chem. 27 1787

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Feynman R P 1939 Phys. Rev. 56 340

    [34]

    Meyer J, Chuvilin A, Algara S G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683

  • [1]

    Makarova T L, Sundqvist B, Hohne R, Esqulnazl P, Kopelevich K, Scharff P, Davydov V A, Kahsevarova L A, Rakhmanina A V 2001 Nature 413 716

    [2]

    Shibayama Y, Sato H, Enoki T, Endo M 2000 Phys. Rev. Lett. 84 1744

    [3]

    Yang K S, Wu R, Shen L, Feng Y P, Dai Y, Huang B B 2010 Phys. Rev. B 81 125211

    [4]

    Ma Y D, Dai Y, Huang B B 2011 Comput. Mater. Sci. 50 1661

    [5]

    Attema J J, de Wijs G A, Blake G R, de Groot R A 2005 J. Am. Chem. Soc. 127 16325

    [6]

    Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867

    [7]

    Zhang P, Li X D, Hu C H, Wu S Q, Zhu Z Z 2012 Phys. Lett. A 376 1230

    [8]

    Gao T H 2014 Acta Phys. Sin. 63 046102 (in Chinese) [高潭华 2014 63 046102]

    [9]

    Xu L, Dai Z H, Sui P F, Wang W T, Sun Y M 2014 Acta Phys. Sin. 63 186101 (in Chinese) [徐雷, 戴振宏, 隋鹏飞, 王伟田, 孙玉明 2014 63 186101]

    [10]

    Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301

    [11]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610

    [12]

    Haberer D, Vyalikh D V, Taioli S, Dora B, Farjam M, Fink J, Marchenko D, Pichler T, Ziegler O K, Simonucci S, Dresselhaus M S, Knupfer M, Bchner B, Grneis A 2010 Nano Lett. 10 3360

    [13]

    Meyer J C, Chuvilin A, Algara S G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683

    [14]

    Zhi C Y, Bando Y, Tang C C, Kuwahara H, Golberg D 2009 Adv. Mater. 21 2889

    [15]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone N J 2010 Nanotechnology 5 722

    [16]

    Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291

    [17]

    Sachs B, Wehling T O, Katsnelson M I, Lichtenstein A I 2011 Phys. Rev. B 84 195414

    [18]

    Song J C W, Shytov A V, Levitov L S 2013 Phys. Rev. Lett. 111 266801

    [19]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [20]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 6139

    [21]

    Mucha K M, Wallbank J R, Fal’Ko V I 2013 Phys. Rev. B 88 205418

    [22]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha K M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’Ko V I, Geim A K 2013 Nature 497 594

    [23]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103

    [24]

    Chen Q L, Dai Z H, Liu Z Q, An Y F, Liu Y L 2016 Acta Phys. Sin. 65 136101 (in Chinese) [陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林 2016 65 136101]

    [25]

    Kharche N, Nayak S K 2011 Nano Lett. 11 5274

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [29]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [30]

    Grimme S 2006 Comput. Chem. 27 1787

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Feynman R P 1939 Phys. Rev. 56 340

    [34]

    Meyer J, Chuvilin A, Algara S G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683

  • [1] 刘东静, 周福, 胡志亮, 黄家强. 石墨烯/GaN异质结构界面热输运性质的分子动力学研究.  , 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [2] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究.  , 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [3] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究.  , 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [4] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究.  , 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [5] 武敏, 费宏明, 林瀚, 赵晓丹, 杨毅彪, 陈智辉. 基于二维六方氮化硼材料的光子晶体非对称传输异质结构设计.  , 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [6] 邹俊辉, 张娟. 混合准周期异质结构的带隙补偿与展宽.  , 2016, 65(1): 014214. doi: 10.7498/aps.65.014214
    [7] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算.  , 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [8] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [9] 李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德. BiOCl{001}表面原子与电子结构的第一性原理研究.  , 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [10] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质.  , 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [11] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究.  , 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [12] 李忠虎, 李林, 祁阳. BaCoxZn2-xFe16O27六角铁氧体电子结构与介电特性的第一性原理研究.  , 2012, 61(20): 207102. doi: 10.7498/aps.61.207102
    [13] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究.  , 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [14] 程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀. 三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究.  , 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [15] 李忠虎, 李林, 朱林. W形六角铁氧体BaFe18O27电子结构与导电性的第一性原理研究.  , 2011, 60(10): 107102. doi: 10.7498/aps.60.107102
    [16] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算.  , 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [17] 叶涛, 徐旭明. 高效异质结构四波长波分复用器的设计与优化.  , 2010, 59(9): 6273-6278. doi: 10.7498/aps.59.6273
    [18] 杨冲, 杨春. Si(001)表面硅氧团簇原子与电子结构的第一性原理研究.  , 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 王华, 于军, 董小敏, 王耘波, 周文利, 赵建洪, 周东祥. Au/PZT/BIT/p-Si异质结的制备与性能研究.  , 2001, 50(5): 981-985. doi: 10.7498/aps.50.981
计量
  • 文章访问数:  5650
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-26
  • 修回日期:  2018-05-22
  • 刊出日期:  2019-08-20

/

返回文章
返回
Baidu
map