搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维硼结构中条带状空位长程有序分布的理论研究

徐诗涵 何长春 杨小宝

引用本文:
Citation:

二维硼结构中条带状空位长程有序分布的理论研究

徐诗涵, 何长春, 杨小宝

Theoretical study of long-range ordered vacancy distribution in two-dimensional boron structures

Xu Shi-Han, He Chang-Chun, Yang Xiao-Bao
PDF
HTML
导出引用
  • 在二维硼结构中, 有序分布的高浓度空位可以增强其结构的稳定性, 并对材料性能产生显著影响. 根据最近的实验进展, 本文重点关注二维硼结构中空位呈条带状分布的体系, 提出有效模型系统研究结构稳定性随空位分布的变化. 结合第一性原理计算结果, 对空位不同近邻作用参数进行拟合, 预测了不同空位浓度的稳定结构, 发现在该体系中空位不同近邻存在竞争, 导致长周期分布的趋势, 揭示了不同近邻作用的相互竞争导致长周期结构稳定存在的关键机制.
    In a two-dimensional boron structure, the ordered high-concentration vacancy distribution can enhance structural stability and significantly modulates material properties. Based on recent experimental progress, herein we particularly focus on the two-dimensional boron structures with a striped distribution of hexagonal vacancies, in order to explore the formation of long-period boron structures.Utilizing the structures of alloy generation and recognition (SAGAR) program developed by our group, we eliminate duplicate structures according to the structural symmetry to reduce computational cost. An effective model system is proposed to investigate the effect of vacancy distribution on the stability of the system, where the interactions between vacancies are utilized for estimating the total energy. By selecting structures with appropriate concentrations and combining first-principles calculations, the parameters in the model are fitted for different vacancy neighbor interactions, which can be further used to predict stable structures at various vacancy concentrations. The feasibility of model analysis is emphasized for structural screening, showing the good agreement between the parameterized model and the first-principles calculations.Interestingly, under the same vacancy concentration, stable boron structures with different cell sizes exhibit distinct vacancy distributions, indicating a trend of long-period distribution for ground state structures. To address this phenomenon, when the stable candidate structures from the 1/6 series are dominant in number within the computable range and the changes in neighbor statistics can be clearly seen, we select the structures from this concentration series for detailed calculations.The calculation results indicate that the convergence of the average energy is primarily influenced by the interaction between the fourth nearest neighbor and the sixth nearest neighbor. When considering only these two neighbors, the system energy changes with the increase of cell size as follows: the average energy of structures with a cell size being an even multiple of the minimum cell size keeps unchanged, while the average energy of structure with a cell size being an odd multiple of the minimum cell size gradually decreases, eventually converging to a stable value. When including the interactions between the ninth nearest neighbor and the tenth nearest neighbor, the average energy of structures with a cell size being an even times the minimum cell size also decreases gradually. The average energy decreases with oscillations, with the magnitude gradually diminishing and eventually stabilizing. This discovery reveals that the enhanced stability of long-period structures is attributed to the competitive interactions among different neighboring vacancies.
      通信作者: 杨小宝, scxbyang@scut.edu.cn
    • 基金项目: 广州基础与应用基础研究项目 (批准号: 202201010090)资助的课题.
      Corresponding author: Yang Xiao-Bao, scxbyang@scut.edu.cn
    • Funds: Project supported by the Science and Technology Program of Guangzhou, China (Grant No. 202201010090).
    [1]

    Zhao L, Schwarz W E, Frenking G 2019 Nat. Rev. Chem. 3 35Google Scholar

    [2]

    Jhi S H, Louie S G, Cohen M L, Ihm J 2001 Phys. Rev. Lett. 86 3348Google Scholar

    [3]

    Hart G L, Zunger A 2001 Phys. Rev. Lett. 87 275508Google Scholar

    [4]

    Kaneti Y V, Benu D P, Xu X, Yuliarto B, Yamauchi Y, Golberg D 2021 Chem. Rev. 122 1000Google Scholar

    [5]

    Tang H, Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501Google Scholar

    [6]

    Yang X B, Ding Y, Ni J 2008 Phys. Rev. B 77 041402(RGoogle Scholar

    [7]

    Wu X J, Dai J, Zhao Y, Zhuo Z W, Yang J L, Zeng X C 2012 ACS Nano 6 7443Google Scholar

    [8]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R 2015 Science 350 1513Google Scholar

    [9]

    Zhang L Z, Yan Q B, Du S X, Su G, Gao H J 2012 J. Phys. Chem. C 116 18202Google Scholar

    [10]

    Liu Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Ed. 52 3156Google Scholar

    [11]

    Liu H S, Gao J F, Zhao J J 2013 Sci. Rep. 3 3238Google Scholar

    [12]

    Zhang Z H, Yang Y, Gao G Y, Yakobson B I 2015 Angew. Chem. 54 13022Google Scholar

    [13]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 563Google Scholar

    [14]

    Zhong Q, Kong L J, Gou J, Li W B, Sheng S X, Yang S, Cheng P, Li H, Wu K H, Chen L 2017 Phys. Rev. Mater. 1 021001Google Scholar

    [15]

    Wang Y, Kong L, Chen C, Cheng P, Feng B, Wu K H, Chen L 2020 Adv. Mater. 32 2005128Google Scholar

    [16]

    Li W B, Kong L J, Chen C Y, Gou J, Sheng S X, Zhang W F, Li H, Chen L, Cheng P, Wu K H 2018 Sci. Bull. 63 282Google Scholar

    [17]

    Wu R, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Božović I, Gozar A 2019 Nat. Nanotechnol. 14 44Google Scholar

    [18]

    Vinogradov N A, Lyalin A, Taketsugu T, Vinogradov A S, Preobrajenski A 2019 ACS Nano 13 14511Google Scholar

    [19]

    Kiraly B, Liu X, Wang L, Zhang Z, Mannix A J, Fisher B L, Yakobson B I, Hersam M C, Guisinger N P 2019 ACS Nano 13 3816Google Scholar

    [20]

    Xu S G, He C C, Zhao Y J, Xu H, Yang X B 2021 Phys. Rev. Mater. 5 044003Google Scholar

    [21]

    Floría L M, Mazo J J 1996 Adv. Phys. 45 505Google Scholar

    [22]

    He C C, Liao J H, Qiu S B, Zhao Y J, Yang X B 2021 Comput. Mater. Sci. 193 110386Google Scholar

  • 图 1  (a)在Ag(100)表面生长出的A相的理论模型结构; (b)将该结构从横向看作是一个包含点空位分布的条带硼链; (c)上述条带硼链的模型示意图, 其原胞为包含3个空位的16个原子位点的结构, 其中空点圆代表空位, 实心圆代表硼原子, 对于最左边的空位, 用数字标出其不同近邻的位置

    Fig. 1.  (a) Theoretical model structure of phase A grown on the Ag(100) surface; (b) a lateral view of the structure as a strip boron chain containing a distribution of point vacancies; (c) a schematic representation of the strip boron chain model, with a unit cell consisting of 16 atomic sites, including 3 vacancies. The point vacancies are denoted by open circles, while the boron atoms are represented by solid circles. For the vacancy on the far left, the diagram has been annotated with numbers to indicate its various neighboring positions.

    图 2  (a)参数拟合计算和第一性原理计算的相关性图像, 其中不同颜色的点代表不同空位浓度的候选结构; (b)第一性原理计算下3/16和1/6系列结构随着原胞大小变化的硼原子平均能量趋势图

    Fig. 2.  (a) Correlation plot between parameter fitting calculations and first-principles calculations; (b) trend graphs of average energy of boron atoms in structures of 3/16 and 1/6 under different cell sizes, as calculated by first-principles methods.

    图 3  (a)—(c)分别为在第一原理计算下3/16系列结构不同原胞大小下的稳定结构, 同时也是参数拟合计算所指向的稳定结构; (d)构造原胞大小为64的3/16系列结构

    Fig. 3.  (a)–(c) Stable structures of the 3/16 series under different cell sizes obtained through first-principles calculations, which are also the stable structures indicated by parameter fitting calculations; (d) artificially constructed structures of 3/16 with a cell size of 64.

    图 4  (a)—(f)分别为1/6系列结构不同原胞的稳定结构. 每个结构的原胞大小分别表示在每个结构图的左上角; (g) 1/6结构随着原胞大小变化的硼原子平均能变化图, 绿线代表拟合计算过程中只选取第4, 5, 6近邻结果, 黑线代表拟合计算过程近邻范围截取到第10近邻结果

    Fig. 4.  (a)–(f) Depict stable structures of the 1/6 series with different cell sizes. The cell size for each structure is indicated in the top left corner of each respective structure diagram. (g) Average energy variation of boron atoms in the 1/6 structure as a function of cell size. The green line represents the fitting calculation process with only the 4th, 5th, and 6th nearest neighbors considered, while the black line represents the fitting calculation process with the neighbor range truncated to the 10th nearest neighbor.

    表 1  4个相同浓度结构的近邻统计数目

    Table 1.  Neighbor count for four structures at the same concentration.

    Si ni
    n2 n3 n4 n5 n6 n7 n8 n9 n10
    S1 0 0 2 1 0 0 0 1 2
    S2 0 0 5 0 1 0 0 4 0
    S3 0 0 7 1 1 0 0 6 1
    S4 0 0 10 0 2 0 0 9 0
    注: Si 代表空位浓度为3/16、原胞大小为16i的结构
    Note: Si represents structures with a vacancy concentration of 3/16 and a cell size of 16i.
    下载: 导出CSV

    表 2  不同原胞大小、浓度相等的稳定结构近邻统计数目

    Table 2.  Neighbor count for stable structures with equivalent concentrations at different cell sizes.

    Si ni
    n4 n5 n6 n7 n8 n9 n10
    S1 1 1 1 0 0 0 1
    S2 2 0 2 0 0 1 0
    S3 2 1 2 0 0 1 1
    S4 3 0 3 0 0 2 0
    S5 3 1 3 0 0 2 1
    S6 4 0 4 0 0 3 0
    S7 4 1 4 0 0 3 1
    S8 5 0 5 0 0 4 0
    注: Si 代表空位浓度为1/6、原胞大小为6(i+2)的结构
    Note: Si represents structures with a vacancy concentration of 1/6 and a cell size of 6(i+2).
    下载: 导出CSV
    Baidu
  • [1]

    Zhao L, Schwarz W E, Frenking G 2019 Nat. Rev. Chem. 3 35Google Scholar

    [2]

    Jhi S H, Louie S G, Cohen M L, Ihm J 2001 Phys. Rev. Lett. 86 3348Google Scholar

    [3]

    Hart G L, Zunger A 2001 Phys. Rev. Lett. 87 275508Google Scholar

    [4]

    Kaneti Y V, Benu D P, Xu X, Yuliarto B, Yamauchi Y, Golberg D 2021 Chem. Rev. 122 1000Google Scholar

    [5]

    Tang H, Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501Google Scholar

    [6]

    Yang X B, Ding Y, Ni J 2008 Phys. Rev. B 77 041402(RGoogle Scholar

    [7]

    Wu X J, Dai J, Zhao Y, Zhuo Z W, Yang J L, Zeng X C 2012 ACS Nano 6 7443Google Scholar

    [8]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R 2015 Science 350 1513Google Scholar

    [9]

    Zhang L Z, Yan Q B, Du S X, Su G, Gao H J 2012 J. Phys. Chem. C 116 18202Google Scholar

    [10]

    Liu Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Ed. 52 3156Google Scholar

    [11]

    Liu H S, Gao J F, Zhao J J 2013 Sci. Rep. 3 3238Google Scholar

    [12]

    Zhang Z H, Yang Y, Gao G Y, Yakobson B I 2015 Angew. Chem. 54 13022Google Scholar

    [13]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 563Google Scholar

    [14]

    Zhong Q, Kong L J, Gou J, Li W B, Sheng S X, Yang S, Cheng P, Li H, Wu K H, Chen L 2017 Phys. Rev. Mater. 1 021001Google Scholar

    [15]

    Wang Y, Kong L, Chen C, Cheng P, Feng B, Wu K H, Chen L 2020 Adv. Mater. 32 2005128Google Scholar

    [16]

    Li W B, Kong L J, Chen C Y, Gou J, Sheng S X, Zhang W F, Li H, Chen L, Cheng P, Wu K H 2018 Sci. Bull. 63 282Google Scholar

    [17]

    Wu R, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Božović I, Gozar A 2019 Nat. Nanotechnol. 14 44Google Scholar

    [18]

    Vinogradov N A, Lyalin A, Taketsugu T, Vinogradov A S, Preobrajenski A 2019 ACS Nano 13 14511Google Scholar

    [19]

    Kiraly B, Liu X, Wang L, Zhang Z, Mannix A J, Fisher B L, Yakobson B I, Hersam M C, Guisinger N P 2019 ACS Nano 13 3816Google Scholar

    [20]

    Xu S G, He C C, Zhao Y J, Xu H, Yang X B 2021 Phys. Rev. Mater. 5 044003Google Scholar

    [21]

    Floría L M, Mazo J J 1996 Adv. Phys. 45 505Google Scholar

    [22]

    He C C, Liao J H, Qiu S B, Zhao Y J, Yang X B 2021 Comput. Mater. Sci. 193 110386Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算.  , 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [3] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , 2021, (): . doi: 10.7498/aps.70.20211631
    [4] 丁庆松, 罗朝波, 彭向阳, 师习之, 何朝宇, 钟建新. 硅石墨烯g-SiC7的Si分布和结构的第一性原理研究.  , 2021, 70(19): 196101. doi: 10.7498/aps.70.20210621
    [5] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析.  , 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [6] 陈献, 程梅娟, 吴顺情, 朱梓忠. 石墨炔衍生物结构稳定性和电子结构的第一性原理研究.  , 2017, 66(10): 107102. doi: 10.7498/aps.66.107102
    [7] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究.  , 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [8] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算.  , 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [9] 顾牡, 林玲, 刘波, 刘小林, 黄世明, 倪晨. M’型GdTaO4电子结构的第一性原理研究.  , 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [10] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究.  , 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [11] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算.  , 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [12] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算.  , 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [13] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究.  , 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [14] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究.  , 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [15] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究.  , 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [16] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究.  , 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [17] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算.  , 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [18] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算.  , 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [19] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算.  , 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究.  , 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  1467
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 修回日期:  2024-02-04
  • 上网日期:  2024-03-19
  • 刊出日期:  2024-05-05

/

返回文章
返回
Baidu
map