Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental synthesis of borophene

Li Wen-Hui Chen Lan Wu Ke-Hui

Citation:

Experimental synthesis of borophene

Li Wen-Hui, Chen Lan, Wu Ke-Hui
PDF
HTML
Get Citation
  • As the lightest two-dimensional material discovered so far, borophene exhibits rich physical properties, including high flexibility, optical transparency, high thermal conductivity, one-dimensional nearly free electron gas, Dirac fermions, and superconductivity. However, due to the strong interlayer covalent bonding force of bulk boron, it is difficult to obtain the monolayer borophene via mechanical exfoliation. In addition, due to the electron-deficient property of boron atoms, its chemical properties are relatively active, and its bonding is complex, resulting in different boron allotropes, which is different from other two-dimensional materials. For a long time, the research on borophene has been limited to theoretical exploration, and it has been difficult to make breakthroughs in the experimental synthesis of two-dimensional borophene. It has been only successfully prepared by a few research groups in recent years. However, there is still huge space for exploration on the growth, structure and electronic properties of borophene. This paper systematically reviews the preparation methods and different structures of borophene under different substrates, and its growth mechanism is discussed. It provides a research platform for further expanding the physical properties of borophene, and provides ideas for exploring the preparation of borophene nanodevices. It has great potential application prospects in high energy storage, optoelectronic devices, high detection sensitivity, and flexible nanodevices.
      Corresponding author: Chen Lan, lchen@iphy.ac.cn ; Wu Ke-Hui, khwu@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFE0202700), National Natural Science Foundation of China (Grant No. 12134019), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Traversi F, Raillon C, Benameur S M, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A 2013 Nat. Nanotechnol. 8 939Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [4]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim K 2007 Science 315 1379Google Scholar

    [5]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [6]

    Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507Google Scholar

    [7]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414Google Scholar

    [8]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S S, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [9]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671Google Scholar

    [10]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [11]

    Ji J P, Song X F, Liu J Z, Yan Z, Huo C X, Zhang S L, Su M, Liao L, Wang W H, Ni Z H, Hao Y F, Zeng H B 2016 Nat. Commun. 7 1Google Scholar

    [12]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 563Google Scholar

    [13]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [14]

    Jiang H R, Lu Z, Wu M C, Ciucci F, Zhao T S 2016 Nano Energy 23 97Google Scholar

    [15]

    Gou J, Kong L J, He X Y, Huang Y L, Sun J T, Meng S, Wu K H, Chen L, Wee A T S 2020 Sci. Adv. 6 eaba2773Google Scholar

    [16]

    Rastgou A, Soleymanabadi H, Bodaghi A 2017 Microelectron. Eng. 169 9Google Scholar

    [17]

    Liu Z, Liu C X, Wu Y S, Duan W H, Liu F, Wu J 2011 Phys. Rev. Lett. 107 136805Google Scholar

    [18]

    Wu X J, Dai J, Zhao Y, Zhuo Z W, Yang J L, Zeng X C 2012 ACS Nano 6 7443Google Scholar

    [19]

    Zhang Z H, Yang Y, Penev E S, Yakobson B I 2017 Adv. Funct. Mater. 27 1605059Google Scholar

    [20]

    Kong L J, Liu L, Chen L, Zhong Q, Cheng P, Li H, Zhang Z H, Wu K H 2019 Nanoscale 11 15605Google Scholar

    [21]

    Yang J, Quhe R, Feng S Y, Zhang Q X, Lei M, Lu J 2017 Phys. Chem. Chem. Phys. 19 23982Google Scholar

    [22]

    Peng B, Zhang H, Shao H Z, Xu Y F, Zhang R J, Zhu H Y 2016 J. Mater. Chem. C 4 3592Google Scholar

    [23]

    Novotný M, Domínguez-Gutiérrez F J, Krstić P 2017 J. Mater. Chem. C 5 5426Google Scholar

    [24]

    Vishkayi S I, Tagani M B 2018 Phys. Chem. Chem. Phys. 20 10493Google Scholar

    [25]

    Li D F, He J, Ding G Q, Tang Q Q, Ying Y, He J J, Zhong C Y, Liu Y, Feng C B, Sun Q L, Zhou H B, Zhou P, Zhang G 2018 Adv. Funct. Mater. 28 1801685Google Scholar

    [26]

    Verma S, Mawrie A, Ghosh T K 2017 Phys. Rev. B 96 155418Google Scholar

    [27]

    Mannix A J, Zhang Z, Guisinger N P, Yakobson B I, Hersam M C 2018 Nat. Nanotechnol. 13 444Google Scholar

    [28]

    Oganov A R, Solozhenko V L 2009 J. Superhard Mater. 31 285Google Scholar

    [29]

    Zhang Z, Penev E. S, Yakobson B I 2017 Chem. Soc. Rev. 46 6746Google Scholar

    [30]

    Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I, Wang L S 2003 Angew. Chem. Int. Ed. 42 6004Google Scholar

    [31]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. 102 961Google Scholar

    [32]

    Li W L, Chen Q, Tian W J, Bai H, Zhao Y F, Hu H S, Li J, Zhai H J, Li S D, Wang L S 2014 J. Am. Chem. Soc. 136 12257Google Scholar

    [33]

    Boustani I 1995 Chem. Phys. Lett. 240 135Google Scholar

    [34]

    Boustani I 1997 Surf. Sci. 370 355Google Scholar

    [35]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nat. Mater. 2 827Google Scholar

    [36]

    Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2006 Coord. Chem. Rev. 250 2811Google Scholar

    [37]

    Li W L, Chen X, Jian T, Chen T T, Li J, Wang L S 2017 Nat. Rev. Chem. 1 1Google Scholar

    [38]

    Evans M H, Joannopoulos J D, Pantelides S T. 2005 Phys. Rev. B 72 045434Google Scholar

    [39]

    Kunstmann J, Quandt A 2006 Phys. Rev. B 74 035413Google Scholar

    [40]

    Tang H, Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501Google Scholar

    [41]

    Yang X B, Ding Y, Ni J. 2008 Phys. Rev. B 77 041402(R)

    [42]

    Zhang L Z, Yan Q B, Du S X, Su G, Gao H J 2012 J. Phys. Chem. C 116 18202Google Scholar

    [43]

    Liu Y Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Ed. 52 3156Google Scholar

    [44]

    Liu H S, Gao J F, Zhao J J 2013 Sci. Rep. 3 1Google Scholar

    [45]

    Zhang Z H, Yang Y, Gao G Y, Yakobson B 2015 Angew. Chem. 127 13214Google Scholar

    [46]

    Zhang Z, Mannix A J, Hu Z, Kiraly B, Guisinger N P, Hersam M C, Yakobson B I 2016 Nano Lett. 16 6622Google Scholar

    [47]

    Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B, Le Lay G 2010 Appl. Phys. Lett. 96 183102Google Scholar

    [48]

    Feng B J, Li H, Meng S, Chen L, Wu K H 2016 Surf. Sci. 645 74Google Scholar

    [49]

    Zhong Q, Kong L J, Gou J, Li W B, Sheng S X, Yang S, Cheng P, Li H, Wu K H, Chen L 2017 Phys. Rev. Mater. 1 021001Google Scholar

    [50]

    Wang Y, Kong L J, Chen C Y, Cheng P, Feng B J, Wu K H, Chen L 2020 Adv. Mater. 32 2005128Google Scholar

    [51]

    Buzea C, Yamashita T 2001 Supercond. Sci. Technol. 14 R115Google Scholar

    [52]

    Li W B, Kong L J, Chen C Y, Gou J, Sheng S X, Zhang W F, Li H, Chen L, Cheng P, Wu K H 2018 Sci. Bull. 63 282Google Scholar

    [53]

    Geng D, Yu K, Yue S, Cao J, Li W, Ma D, Cui C, Arita M, Kumar S, Schwier E F, Shimada K, Cheng P, Chen L, Wu K H, Yao Y, Feng B J 2020 Phys. Rev. B. 101 161407Google Scholar

    [54]

    Kiraly B, Liu X L, Wang L Q, Zhang Z H, Mannix A J, Fisher B L, Yakobson B I, Hersam M C, Guisinger N P 2019 ACS Nano 13 3816Google Scholar

    [55]

    Wu R T, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Božović I, Gozar A 2019 Nat. Nanotechnol. 14 44Google Scholar

    [56]

    Wu R T, Gozar A, Božović I 2019 NPJ Quantum Mater. 4 1Google Scholar

    [57]

    Vinogradov N A, Lyalin A, Taketsugu T, Vinogradov A S, Preobrajenski A 2019 ACS Nano 13 14511Google Scholar

    [58]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [59]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Natures 556 43

    [60]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [61]

    de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X D, Xiao D, Hunt B M 2018 Nat. Commun. 9 1427Google Scholar

    [62]

    Cui J, Li P L, Zhou J D, He W Y, Huang X W, Yi J, Fan J, Ji Z Q, Jing X N, Qu F M, Cheng Z G, Yang C L, Lu L, Suenaga K, Liu J W, Law K T, Lin J H, Liu Z, Liu G T 2019 Nat. Commun. 10 2044Google Scholar

    [63]

    Regan E C, Wang D, Jin C, Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlstrom J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [64]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [65]

    Jin C, Regan E C, Yan A, Iqbal Bakti U M, Wang D Q, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [66]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I, Tartakovskii A I 2019 Nature 567 81Google Scholar

    [67]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [68]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [69]

    Gao N, Wu X, Jiang X, Bai Y, Zhao J 2018 FlatChem 7 48Google Scholar

    [70]

    Nakhaee M, Ketabi S A, Peeters F M 2018 Phys. Rev. B 98 115413Google Scholar

    [71]

    Li D, Tang Q, He J, Li B, Ding G, Feng C, Zhou H B, Zhang G 2019 ACS Omega. 4 8015Google Scholar

    [72]

    Xu S G, Zheng B, Xu H, Yang X B 2019 J. Phys. Chem. C 123 4977Google Scholar

    [73]

    Zhao Y, Zeng S, Ni J 2016 Phys. Rev. B 93 014502Google Scholar

    [74]

    Liu X L, Li Q C, Ruan Q Y, Rahn M S, Yakobson B I, Hersam M C 2021 Nat. Mater. 21 35Google Scholar

    [75]

    Chen C Y, Lv H F, Zhang P, Zhuo Z W, Wang Y, Ma C, Li W B, Wang X G, Feng B J, Cheng P, Wu X J, Wu K H, Chen L 2021 Nat. Chem. 14 25Google Scholar

    [76]

    Cuxart M G, Seufert K, Chesnyak V, Waqas W A, Robert A, Bocquet M L, Duesberg G S, Sachdev H, Auwärter W 2021 Sci. Adv. 7 eabk1490Google Scholar

    [77]

    Farwick zum Hagen F H, Zimmermann D M, Silva C C, Schlueter C, Atodiresei N, Jolie W, Martínez-Galera A J, Dombrowski D, Schröder U A, Will M, Lazić P, Caciuc V, Blügel S, Lee T L, Michely T, Busse C 2016 ACS Nano 10 11012Google Scholar

    [78]

    Allan M P, Berner S, Corso M, Greber T, Osterwalder J 2007 Nanoscale Res. Lett. 2 94Google Scholar

    [79]

    Petrović M, Hagemann U, Horn-von Hoegen M, zu Heringdorf F J M 2017 Appl. Surf. Sci. 420 504Google Scholar

    [80]

    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217Google Scholar

    [81]

    Sachdev H, Müller F, Hüfner S 2010 Diam. Relat. Mater. 19 1027Google Scholar

    [82]

    Tang H, Ismail-Beigi S 2009 Phys. Rev. B 80 134113Google Scholar

    [83]

    Zhou X F, Oganov A R, Wang Z, Popov I A, Boldyrev A I, Wang H T 2016 Phys. Rev. B 93 085406Google Scholar

    [84]

    Ma F, Jiao Y, Gao G, Gu Y, Bilic A, Chen Z, Du A 2016 Nano Lett. 16 3022Google Scholar

    [85]

    Zhong H, Huang K, Yu G, Yuan S 2018 Phys. Rev. B 98 054104Google Scholar

    [86]

    Ahn S, Kim G, Nayak P K, Yoon S I, Lim H, Shin H J, Shin H S 2016 ACS Nano 10 8973Google Scholar

    [87]

    Li L, Kim J, Jin C, Ye G J, Qiu D Y, da Jornada F H, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie S G, Chen X H, Zhang Y, Wang F 2017 Nat. Nanotechnol. 12 21Google Scholar

    [88]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

  • 图 1  硼烯理论预测和实验制备的研究进展

    Figure 1.  Research progress on theoretical prediction and experimental synthesis of borophene.

    图 2  (a) 硼元素在元素周期表的位置和原子轨道[27]; (b) Bn硼团簇依赖尺寸大小, 从平面或准平面结构, 到笼状结构, 再到核壳结构的变化[29]; (c) ${\rm{B}}_n^- $ (n = 3—38)单阴离子硼团簇的稳定结构以及点群对称性[37]

    Figure 2.  (a) The position and atomic orbital of boron in the periodic table[27]; (b) size-dependent conformation of Bn clusters from planar or quasiplanar, via cagelike to core -shell structures[29]; (c) stable structure and point group symmetry of monoanionic ${\rm{B}}_n^- $ (n = 3–38) clusters[37].

    图 3  (a)和(b)分别为六方孔洞结构的α, β相单层硼烯; (c) 硼烯的结合能随六方孔洞密度变化[40]

    Figure 3.  (a) and (b) α, β phase monolayer borophene with hexagonal hole structure, respectively; (c) binding energies vs hexagon hole density for borophene with evenly distributed hexagons[40].

    图 4  理论预言无衬底支撑的各种单层硼烯结构 (a) δ相; (b) χ相; (c) α相; (d) β相. 红色和黄色小球表示硼原子面外或面内运动, 导致硼原子层翘曲[18]

    Figure 4.  Various monolayer borophene structures without substrate support by theoretical prediction: (a) δ phase; (b) χ phase; (c) α phase; (d) β phase. Red and yellow balls denote borophene atoms moving outward or inward from the plane, resulting in buckled borophene[18].

    图 5  不同金属衬底上单层硼烯的基态稳定结构[45]

    Figure 5.  Stable structures of monolayer borophene with respect to ground states on different metal substrates[45].

    图 6  (a) Ag(111)衬底温度为570 K时形成的硼烯薄膜; (b)图(a)的三维立体模式; (c) S1相的高分辨STM图; (d) S1相硼烯的理论模型β12结构; (e) 650 K退火后, 大部分S1相转变为S2相硼烯; (f)图(e)中黑色方框区域的高分辨STM图; (g) S2相的高分辨STM图; (h) S2相硼烯的理论模型χ3结构[12]

    Figure 6.  (a) Experimental STM image of borophene on the Ag (111) substrate at 570 K; (b) 3 D image of (a); (c) high-resolution STM image about S1 phases; (d) theoretical model of the S1 phase borophene considered to be the β12 structure; (e) most of the borophene islands are transformed from S1 phase to S2 phase after annealing at 650 K; (f) STM image of the area of highlight by the rectangle of (e); (g) high-resolution STM image of the S2 phase ; (h) theoretical model of the S2 phase borophene considered to be the χ3 structure[12].

    图 7  (a) 硼烯的生长示意图; (b)和(c)分别为硼烯的STM形貌图和电子态密度图, 红色、白色和蓝色箭头分别表示均匀相、条纹相和条纹相纳米带; (d) 条纹相的原子分辨图和理论模型; (e)和(f)分别为均匀相硼烯的STM形貌图和电子态密度图; (g) 均匀相的原子分辨图和理论模型; (h)和(i)分别为铺满衬底单层硼烯的STM形貌图和电子态密度图[13]

    Figure 7.  (a) Schematics of synthesizing borophene; (b) and (c) the STM topography and electron density of states of borophene, respectively, the red, white, and blue marks denote homogeneous phase, striped phase, and striped phase nanoribbons, respectively; (d) STM image about atomic level structure and theoretical model of the striped-phase; (e) and (f) the STM topography and electron density of states of homogeneous phase borophene, respectively; (g) STM image about atomic level structure and theoretical model of the homogeneous phase; (h) and (i) represent the STM topography and electron density of states of monolayer borophene covered the substrate, respectively[13].

    图 8  (a) 在Ag(110)表面生长的硼烯纳米带; (b)—(e) P1—P4相硼烯纳米带的高分辨率STM图像; (f)—(i)P1—P4相硼烯的理论模型[49]

    Figure 8.  (a) Synthesis borophene nanoribbons on Ag(110) ; (b)–(e) high-resolution STM images of the P1–P4 phase borophene, respectively ; (f)–(i) theoretical model of the P1–P4 phase borophene, respectively[49].

    图 9  (a) Ag(100)衬底上硼烯制备示意图; (b)和(c) 硼烯有A, B, C三种不同链状结构; (d)—(f) A, B, C三种硼烯相的高分辨STM图; (g)—(i)对应(d)—(f)中的三种硼烯相的原子结构模型. 其中A相(g)和C相(i)是典型的准一维原子链混合相结构[50]

    Figure 9.  (a) Schematics of synthesizing borophene on Ag(100); (b) and (c) three different chain structures of A, B, and C phase borophene; (d)–(f) high-resolution STM image of the A, B, and C phase borophene, respectively ; (g)–(i) theoretical models of different phases borophene of (d)–(f), respectively. the phase (g) and C phase (i) are typical quasi-one-dimensional atomic chain mixed different phases[50].

    图 10  (a) 蜂窝状结构硼烯的示意图; (b)—(d) Al(111)衬底上硼烯薄膜的 STM图, 其中(d)图显示出三角形的周期性起伏结构; (e) Al(111)衬底上硼烯薄膜的原子结构模型图[52]

    Figure 10.  (a) Schematic of the honeycomb structure of borophene; (b)–(d) STM images of borophene on Al(111), which shows the periodic triangle undulating structure in (d); (e) atomic structure model of borophene on Al(111) [52].

    图 11  (a) Au(111)表面鱼骨状条纹的STM图像; (b)沉积硼后, Au(111)表面鱼骨状条纹被调制为三角网格; (c) 硼烯v1/12相的理论模型; (d) 室温沉积硼B 1s能级峰; (e) 随着硼含量增大, Au(111)三角网格破裂, 硼烯岛长大; (f) 硼烯生长动态示意图; (g) 硼在Au(111)上扩散的最小能量路径[54]

    Figure 11.  (a) STM image of Au(111) surface that shows herringbone stripes; (b) following boron deposition, the herringbone reconstruction was modified to a trigonal network ; (c) atomic structure of the borophene v1/12 computationally modeled; (d) B 1s core-level spectra for room-temperature B deposition; (e) increasing boron dose results in the breakdown of the trigonal network and growth of larger borophene islands; (f) schematic illustration of borophene growth dynamics; (g) minimum energy path for boron diffusion on Au(111) [54].

    图 12  (a) Cu(111)衬底上硼烯的生长动态过程; (b) 硼烯的STM原子分辨图; (c) 理论计算硼烯的恒隧穿电流等能面; (d) 硼烯的原子结构[55]

    Figure 12.  (a) Growth dynamics of the borophene on the Cu(111) surface; (b) high resolution STM of borophene; (c) DFT-simulated constant tunnelling current isosurface of the borophene; (d) atomic structure of borophene[55].

    图 13  (a) Ir(111)衬底上生长硼烯示意图; (b) STM显示硼烯的3个等价方向畴界; (c) 洁净Ir(111)表面的LEED图案; (d) 硼烯/Ir(111)的LEED图案; (e) 硼烯波浪条纹状; (f) 硼烯单胞结构; (g)和(h) Ir(111)衬底上的χ6硼烯结构及电荷分布[57]

    Figure 13.  (a) Schematics of synthesizing borophene on Ir(111); (b) STM image of borophene domains on Ir(111) showing three equivalent orientations; (c) LEED pattern from clean Ir(111); (d) LEED pattern from borophene/Ir(111); (e) undulated-stripe appearance of borophene; (f) unit cell structure of borophene; (g) and (h) optimized structure of χ6 borophene on Ir(111) surface and charge redistribution[57].

    图 14  (a) 双层硼烯的晶格结构, 体相硼的基本结构单元为B12正二十面体; (b) Ag(111)上生长的双层硼烯; (c)双层硼烯的STM原子分辨; (d)双层硼烯的CO-STM图像; (e) 双层硼烯与单层v1/5相的界面; (f) Ag(111)衬底上双层硼烯的理论模型结构; (g) 双层硼烯与Ag(111)形成的摩尔条纹; (h)和(i) 双层硼烯的CO-STM与CO-AFM图像[74]

    Figure 14.  (a) Lattice structure of bilayer borophene, schematic of the B12 icosahedron unit that is the basis of bulk boron polymorphs; (b) growth of BL borophene on Ag(111); (c) atomic-scale imaging of BL borophene; (d) CO-STM image of BL borophene; (e) CO-STM image of the interface between BL borophene and v1/5 borophene; (f) the atomic structure of BL borophene on Ag(111); (g) illustration of the moiré superlattice formed between BL borophene and Ag(111); (h) and (i) experimental CO-STM and CO-AFM images of BL borophene, respectively[74].

    图 15  (a) 单层与双层硼烯共存的形貌图; (b) Cu(111)上生长的双层硼烯; (c) 双层硼烯退火后形成较大的畴; (d) 双层硼烯的STM原子图像; (e)和(f)分别为双层硼烯的第1层和第2层硼烯原子模型结构; (g)双层硼烯的电荷密度分布; (h)和(i)分别为双层硼烯与单层硼烯的XPS谱[75]

    Figure 15.  (a) Coexisting monolayer (ML) and bilayer (BL) borophene; (b) grow BL borophene on Cu(111); (c) BL borophene with a large single-phase domain after annealing; (d) high-resolution STM images of BL borophene; (e) and (f) atomic structures of the first and second layers of BL borophene; (g) charge distribution between BL borophene and the Cu(111) substrate; (h) and (i) the XPS spectra of bilayer and monolayer borophene, respectively[75].

    图 16  CVD法在Ir(111)衬底上制备硼烯以及硼烯-氮化硼异质结 (a) Ir(111)衬底上用B2H6生长硼烯的模型图; (b) 硼烯-氮化硼水平异质结的模型图; (c) 硼烯-氮化硼垂直异质结的模型图; (d) 硼烯的STM原子图像; (e)和(f)分别为硼烯-氮化硼水平和垂直异质结的原子图像; (g) 硼烯的电子隧道谱; (h) 覆盖hBN与未覆盖hBN时硼烯的XPS谱[76]

    Figure 16.  CVD growth of borophene and borophene-hBN heterostructures on Ir(111): (a) Schematic of diborane dosage on the preheated Ir(111) surface to obtain borophene; (b) schematic of borophene-hBN lateral heterostructures; (c) schematic of borophene-hBN vertical heterostructures; (d) STM image of borophene; (e) and (f) high-resolution STM image of borophene-hBN lateral and vertical heterostructures ; (g) dI/dV spectra taken on borophene and hBN; (h) XPS spectra of B1s measured on hBN-covered and uncovered borophene, respectively[76].

    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Traversi F, Raillon C, Benameur S M, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A 2013 Nat. Nanotechnol. 8 939Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [4]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim K 2007 Science 315 1379Google Scholar

    [5]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [6]

    Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507Google Scholar

    [7]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414Google Scholar

    [8]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S S, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [9]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671Google Scholar

    [10]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [11]

    Ji J P, Song X F, Liu J Z, Yan Z, Huo C X, Zhang S L, Su M, Liao L, Wang W H, Ni Z H, Hao Y F, Zeng H B 2016 Nat. Commun. 7 1Google Scholar

    [12]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 563Google Scholar

    [13]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [14]

    Jiang H R, Lu Z, Wu M C, Ciucci F, Zhao T S 2016 Nano Energy 23 97Google Scholar

    [15]

    Gou J, Kong L J, He X Y, Huang Y L, Sun J T, Meng S, Wu K H, Chen L, Wee A T S 2020 Sci. Adv. 6 eaba2773Google Scholar

    [16]

    Rastgou A, Soleymanabadi H, Bodaghi A 2017 Microelectron. Eng. 169 9Google Scholar

    [17]

    Liu Z, Liu C X, Wu Y S, Duan W H, Liu F, Wu J 2011 Phys. Rev. Lett. 107 136805Google Scholar

    [18]

    Wu X J, Dai J, Zhao Y, Zhuo Z W, Yang J L, Zeng X C 2012 ACS Nano 6 7443Google Scholar

    [19]

    Zhang Z H, Yang Y, Penev E S, Yakobson B I 2017 Adv. Funct. Mater. 27 1605059Google Scholar

    [20]

    Kong L J, Liu L, Chen L, Zhong Q, Cheng P, Li H, Zhang Z H, Wu K H 2019 Nanoscale 11 15605Google Scholar

    [21]

    Yang J, Quhe R, Feng S Y, Zhang Q X, Lei M, Lu J 2017 Phys. Chem. Chem. Phys. 19 23982Google Scholar

    [22]

    Peng B, Zhang H, Shao H Z, Xu Y F, Zhang R J, Zhu H Y 2016 J. Mater. Chem. C 4 3592Google Scholar

    [23]

    Novotný M, Domínguez-Gutiérrez F J, Krstić P 2017 J. Mater. Chem. C 5 5426Google Scholar

    [24]

    Vishkayi S I, Tagani M B 2018 Phys. Chem. Chem. Phys. 20 10493Google Scholar

    [25]

    Li D F, He J, Ding G Q, Tang Q Q, Ying Y, He J J, Zhong C Y, Liu Y, Feng C B, Sun Q L, Zhou H B, Zhou P, Zhang G 2018 Adv. Funct. Mater. 28 1801685Google Scholar

    [26]

    Verma S, Mawrie A, Ghosh T K 2017 Phys. Rev. B 96 155418Google Scholar

    [27]

    Mannix A J, Zhang Z, Guisinger N P, Yakobson B I, Hersam M C 2018 Nat. Nanotechnol. 13 444Google Scholar

    [28]

    Oganov A R, Solozhenko V L 2009 J. Superhard Mater. 31 285Google Scholar

    [29]

    Zhang Z, Penev E. S, Yakobson B I 2017 Chem. Soc. Rev. 46 6746Google Scholar

    [30]

    Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I, Wang L S 2003 Angew. Chem. Int. Ed. 42 6004Google Scholar

    [31]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. 102 961Google Scholar

    [32]

    Li W L, Chen Q, Tian W J, Bai H, Zhao Y F, Hu H S, Li J, Zhai H J, Li S D, Wang L S 2014 J. Am. Chem. Soc. 136 12257Google Scholar

    [33]

    Boustani I 1995 Chem. Phys. Lett. 240 135Google Scholar

    [34]

    Boustani I 1997 Surf. Sci. 370 355Google Scholar

    [35]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nat. Mater. 2 827Google Scholar

    [36]

    Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2006 Coord. Chem. Rev. 250 2811Google Scholar

    [37]

    Li W L, Chen X, Jian T, Chen T T, Li J, Wang L S 2017 Nat. Rev. Chem. 1 1Google Scholar

    [38]

    Evans M H, Joannopoulos J D, Pantelides S T. 2005 Phys. Rev. B 72 045434Google Scholar

    [39]

    Kunstmann J, Quandt A 2006 Phys. Rev. B 74 035413Google Scholar

    [40]

    Tang H, Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501Google Scholar

    [41]

    Yang X B, Ding Y, Ni J. 2008 Phys. Rev. B 77 041402(R)

    [42]

    Zhang L Z, Yan Q B, Du S X, Su G, Gao H J 2012 J. Phys. Chem. C 116 18202Google Scholar

    [43]

    Liu Y Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Ed. 52 3156Google Scholar

    [44]

    Liu H S, Gao J F, Zhao J J 2013 Sci. Rep. 3 1Google Scholar

    [45]

    Zhang Z H, Yang Y, Gao G Y, Yakobson B 2015 Angew. Chem. 127 13214Google Scholar

    [46]

    Zhang Z, Mannix A J, Hu Z, Kiraly B, Guisinger N P, Hersam M C, Yakobson B I 2016 Nano Lett. 16 6622Google Scholar

    [47]

    Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B, Le Lay G 2010 Appl. Phys. Lett. 96 183102Google Scholar

    [48]

    Feng B J, Li H, Meng S, Chen L, Wu K H 2016 Surf. Sci. 645 74Google Scholar

    [49]

    Zhong Q, Kong L J, Gou J, Li W B, Sheng S X, Yang S, Cheng P, Li H, Wu K H, Chen L 2017 Phys. Rev. Mater. 1 021001Google Scholar

    [50]

    Wang Y, Kong L J, Chen C Y, Cheng P, Feng B J, Wu K H, Chen L 2020 Adv. Mater. 32 2005128Google Scholar

    [51]

    Buzea C, Yamashita T 2001 Supercond. Sci. Technol. 14 R115Google Scholar

    [52]

    Li W B, Kong L J, Chen C Y, Gou J, Sheng S X, Zhang W F, Li H, Chen L, Cheng P, Wu K H 2018 Sci. Bull. 63 282Google Scholar

    [53]

    Geng D, Yu K, Yue S, Cao J, Li W, Ma D, Cui C, Arita M, Kumar S, Schwier E F, Shimada K, Cheng P, Chen L, Wu K H, Yao Y, Feng B J 2020 Phys. Rev. B. 101 161407Google Scholar

    [54]

    Kiraly B, Liu X L, Wang L Q, Zhang Z H, Mannix A J, Fisher B L, Yakobson B I, Hersam M C, Guisinger N P 2019 ACS Nano 13 3816Google Scholar

    [55]

    Wu R T, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Božović I, Gozar A 2019 Nat. Nanotechnol. 14 44Google Scholar

    [56]

    Wu R T, Gozar A, Božović I 2019 NPJ Quantum Mater. 4 1Google Scholar

    [57]

    Vinogradov N A, Lyalin A, Taketsugu T, Vinogradov A S, Preobrajenski A 2019 ACS Nano 13 14511Google Scholar

    [58]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [59]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Natures 556 43

    [60]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [61]

    de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X D, Xiao D, Hunt B M 2018 Nat. Commun. 9 1427Google Scholar

    [62]

    Cui J, Li P L, Zhou J D, He W Y, Huang X W, Yi J, Fan J, Ji Z Q, Jing X N, Qu F M, Cheng Z G, Yang C L, Lu L, Suenaga K, Liu J W, Law K T, Lin J H, Liu Z, Liu G T 2019 Nat. Commun. 10 2044Google Scholar

    [63]

    Regan E C, Wang D, Jin C, Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlstrom J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [64]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [65]

    Jin C, Regan E C, Yan A, Iqbal Bakti U M, Wang D Q, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [66]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I, Tartakovskii A I 2019 Nature 567 81Google Scholar

    [67]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [68]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [69]

    Gao N, Wu X, Jiang X, Bai Y, Zhao J 2018 FlatChem 7 48Google Scholar

    [70]

    Nakhaee M, Ketabi S A, Peeters F M 2018 Phys. Rev. B 98 115413Google Scholar

    [71]

    Li D, Tang Q, He J, Li B, Ding G, Feng C, Zhou H B, Zhang G 2019 ACS Omega. 4 8015Google Scholar

    [72]

    Xu S G, Zheng B, Xu H, Yang X B 2019 J. Phys. Chem. C 123 4977Google Scholar

    [73]

    Zhao Y, Zeng S, Ni J 2016 Phys. Rev. B 93 014502Google Scholar

    [74]

    Liu X L, Li Q C, Ruan Q Y, Rahn M S, Yakobson B I, Hersam M C 2021 Nat. Mater. 21 35Google Scholar

    [75]

    Chen C Y, Lv H F, Zhang P, Zhuo Z W, Wang Y, Ma C, Li W B, Wang X G, Feng B J, Cheng P, Wu X J, Wu K H, Chen L 2021 Nat. Chem. 14 25Google Scholar

    [76]

    Cuxart M G, Seufert K, Chesnyak V, Waqas W A, Robert A, Bocquet M L, Duesberg G S, Sachdev H, Auwärter W 2021 Sci. Adv. 7 eabk1490Google Scholar

    [77]

    Farwick zum Hagen F H, Zimmermann D M, Silva C C, Schlueter C, Atodiresei N, Jolie W, Martínez-Galera A J, Dombrowski D, Schröder U A, Will M, Lazić P, Caciuc V, Blügel S, Lee T L, Michely T, Busse C 2016 ACS Nano 10 11012Google Scholar

    [78]

    Allan M P, Berner S, Corso M, Greber T, Osterwalder J 2007 Nanoscale Res. Lett. 2 94Google Scholar

    [79]

    Petrović M, Hagemann U, Horn-von Hoegen M, zu Heringdorf F J M 2017 Appl. Surf. Sci. 420 504Google Scholar

    [80]

    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217Google Scholar

    [81]

    Sachdev H, Müller F, Hüfner S 2010 Diam. Relat. Mater. 19 1027Google Scholar

    [82]

    Tang H, Ismail-Beigi S 2009 Phys. Rev. B 80 134113Google Scholar

    [83]

    Zhou X F, Oganov A R, Wang Z, Popov I A, Boldyrev A I, Wang H T 2016 Phys. Rev. B 93 085406Google Scholar

    [84]

    Ma F, Jiao Y, Gao G, Gu Y, Bilic A, Chen Z, Du A 2016 Nano Lett. 16 3022Google Scholar

    [85]

    Zhong H, Huang K, Yu G, Yuan S 2018 Phys. Rev. B 98 054104Google Scholar

    [86]

    Ahn S, Kim G, Nayak P K, Yoon S I, Lim H, Shin H J, Shin H S 2016 ACS Nano 10 8973Google Scholar

    [87]

    Li L, Kim J, Jin C, Ye G J, Qiu D Y, da Jornada F H, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie S G, Chen X H, Zhang Y, Wang F 2017 Nat. Nanotechnol. 12 21Google Scholar

    [88]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

  • [1] Han Tong-Wei, Li Xuan-Zheng, Zhao Ze-Ruo, Gu Ye-Tong, Ma Chuan, Zhang Xiao-Yan. Mechanical properties and deformation mechanisms of two-dimensional borophene under different loadings. Acta Physica Sinica, 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [2] You Ming-Hui, Li Xue, Li Shi-Jun, Liu Guo-Jun. Growth of lattice matched InAs/AlSb superlattices by molecular beam epitaxy. Acta Physica Sinica, 2023, 72(1): 014203. doi: 10.7498/aps.72.20221383
    [3] Zheng Yu-Qiang, Wang Shi-Yong. Delocalized magnetism in low-dimensional graphene system. Acta Physica Sinica, 2022, 71(18): 188101. doi: 10.7498/aps.71.20220895
    [4] Hu Ju-Gang, Jia Zhen-Yu, Li Shao-Chun. Electron transport property of epitaixial bilayer graphene on SiC substrate. Acta Physica Sinica, 2022, 71(12): 127204. doi: 10.7498/aps.71.20220062
    [5] Huang De-Rao, Song Jun-Jie, He Pi-Mo, Huang Kai-Kai, Zhang Han-Jie. Adsorption behavior of 9,9′-Dixanthylidene and moiré superstructure on Ru(0001). Acta Physica Sinica, 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [6] De-Rao Huang,  Jun-Jie Song,  Pi-Mo He,  Kai-Kai Huang,  Han-Jie Zhang. Adsorption Behavior of 9,9'-Dixanthylidene and Moiré Superstructure on Ru(0001). Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [7] Li Pei-Gen, Zhang Ji-Hai, Tao Ye, Zhong Ding-Yong. Two-dimensional magnetic transition metal halides: molecular beam epitaxy growth and physical property modulation. Acta Physica Sinica, 2022, 71(12): 127505. doi: 10.7498/aps.71.20220727
    [8] Zheng Xiao-Hu, Zhang Jian-Feng, Du Rui-Rui. Comparative study on epitaxial growth of stanene and bismuthene on InSb(111) substrate. Acta Physica Sinica, 2022, 71(18): 186401. doi: 10.7498/aps.71.20221024
    [9] Wang Xing-Yue, Zhang Hui, Ruan Zi-Lin, Hao Zhen-Liang, Yang Xiao-Tian, Cai Jin-Ming, Lu Jian-Chen. Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultra-high vacuum conditions. Acta Physica Sinica, 2020, 69(11): 118101. doi: 10.7498/aps.69.20200174
    [10] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [11] Zhang Zhi-Mo, Zhang Wen-Hao, Fu Ying-Shuang. Scanning tunneling microscopy study on two-dimensional topological insulators. Acta Physica Sinica, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [12] Guo Ze-Kun, Tian Yan, Gan Hai-Bo, Li Zi-Juan, Zhang Tong, Xu Ning-Sheng, Chen Jun, Chen Huan-Jun, Deng Shao-Zhi, Liu Fei. Preparation, structure configuration, physical properties and applications of borophene and two-dimensional alkaline-earth metal boride nanomaterials. Acta Physica Sinica, 2017, 66(21): 217702. doi: 10.7498/aps.66.217702
    [13] Xu Dan, Yin Jun, Sun Hao-Hua, Wang Guan-Yong, Qian Dong, Guan Dan-Dan, Li Yao-Yi, Guo Wan-Lin, Liu Can-Hua, Jia Jin-Feng. Scanning tunneling microscopy study of h-BN thin films grown on Cu foils. Acta Physica Sinica, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [14] Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Acta Physica Sinica, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [15] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [16] Huang Xiang-Qian, Lin Chen-Fang, Yin Xiu-Li, Zhao Ru-Guang, Wang En-Ge, Hu Zong-Hai. Hydrogen adsorption on one-dimensional graphene superlattices. Acta Physica Sinica, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [17] Yang Jing-Jing, Du Wen-Han. Scanning tunnelling microscope investigation of the TiSi2 nano-islands on Sr/Si(100) surface. Acta Physica Sinica, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [18] Huang Ren-Zhong, Liu Liu, Yang Wen-Jing. STM tip-induced atomic motion on the top of film supported by a metal substrate. Acta Physica Sinica, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [19] Ge Si-Ping, Zhu Xing, Yang Wei-Sheng. The manipulation of Cu subsurface interstitial atoms with scanning tunneling microscope. Acta Physica Sinica, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [20] Chen Yong-Jun, Zhao Ru-Guang, Yang Wei-Sheng. Scanning tunneling microscopy studies of alkane and alkanol adsorbed on graphite. Acta Physica Sinica, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
Metrics
  • Abstract views:  8539
  • PDF Downloads:  410
  • Cited By: 0
Publishing process
  • Received Date:  21 January 2022
  • Accepted Date:  07 April 2022
  • Available Online:  17 May 2022
  • Published Online:  20 May 2022

/

返回文章
返回
Baidu
map