Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance

Liu Yi Xu Zheng Zhao Su-Ling Qiao Bo Li Yang Qin Zi-Lun Zhu You-Qin

Citation:

Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance

Liu Yi, Xu Zheng, Zhao Su-Ling, Qiao Bo, Li Yang, Qin Zi-Lun, Zhu You-Qin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The organic-inorganic metal halide perovskite materials have excellent optical and electrical properties such as high absorption coefficient, high carrier mobility, long carrier lifetime, tunable bandgap, facile fabrication process, etc. Owing to the above excellent properties, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has increased significantly from 3.8% to 22.1% in the last few years. The PSCs have attracted intensive interest in recent years and show great commercial potential. Previous approaches to increasing the PCE of PSCs have focused on the optimization of the morphology of perovskite film. However, there are relatively few studies on the electron transport layer (ETL) in the typical p-i-n sandwiched structure. In this work, the PCE of PSCs with device structure of ITO/PEDTO: PSS/CH3NH3PbI3/PCBM/Al is improved from 10.8% to 12.5% by using polystyrene (PS) and 1,8-diiodooctane (DIO) as binary additives during the deposition of phenyl-C61-butyric acid methyl ester (PCBM) layer. With the addition of PS, a highly smooth and uniform PCBM ETL is formed due to the increase of viscosity. The morphologies of the PCBM films prepared with and without PS are analyzed using an atomic force microscope in the tapping mode. The root-mean-square surface roughness decreases from 1.270 to 0.975 nm with the addition of PS increasing, which is more effective in preventing electron and hole from recombining at the interface between the perovskite layer and the top electrode. Addition of DIO improves the morphology of PCBM, which plays an important role in charge dissociation, charge transportation, and charge collection. From the time-resolved photoluminescence decay curves of ITO/CH3NH3PbI3/PCBM (with different additives), it is clear to conclude that the exciton dissociation between the perovskite layer and PCBM layer is faster and faster. Electrons and holes can be quickly separated, indicating that charge transport performances of electron transport layer with the addition DIO turn better. The addition of two additives is a simple and low-cost approach to improving the morphology of the electron transport layer, which provides a path-to the further improvement of the performance of p-i-n PSCs.
      Corresponding author: Xu Zheng, zhengxu@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575019, 51272022, 11474018), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130009130001), the National Key R D Program, China (Grant No. 2016YFB0401302), and the Fundamental Research Fund for the Central Universities, China (Grant No. 2016JBM066).
    [1]

    Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B, Huang J S 2014 Adv. Mater. 26 6503

    [2]

    Takahashi Y, Hasegawa H, Takahashi Y, Inabe T 2013 J. Solid State Chem. 205 39

    [3]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [4]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623

    [5]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506

    [6]

    Kazim S, Nazeeruddin M K, Gratzel M, Ahmad S 2014 Angew. Chem. Int. Ed. 53 2812

    [7]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [8]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [9]

    You J, Hong Z, Yang Y M, Chen Q, Cai M, Song T B, Chen C C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS. Nano 8 1674

    [10]

    Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158

    [11]

    You J, Yang Y M, Hong Z, Song T B, Meng L, Liu Y, Jiang C, Zhou H, Chang W H, Li G, Yang Y 2014 Appl. Phys. Lett. 105 183902

    [12]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J, Jen A K 2014 Adv. Mater. 26 3748

    [13]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [14]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [15]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642

    [16]

    Shao Y C, Yuan Y B, Huang J S 2016 Nature Energy 1 15001

    [17]

    Liu Z H, Lee E C 2015 Organic Electronics. Lett. 24 101

    [18]

    Huang Y, Wen W, Mukherjee S, Ade H, Kramer E J, Bazan G C 2014 Adv. Mater. 26 4168

    [19]

    Wu C C, Wu C I, Sturm J C, Kahn A 1997 Appl. Phys. Lett. 70 1348

    [20]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environmental Science 7 2642

    [21]

    Bai Y, Yu H, Zhu Z L, Jiang K, Zhang T, Zhao N, Yang S H, Yan H 2015 Journal of Materials Chemistry A: Sci. 3 9098

    [22]

    Lakowicz L R 1999 Principles of Fluorescence Spectroscopy (New York: Kluwert Academic/Plenum Pyblishers)

    [23]

    Kumar A, Li G, Hong Z, Yang Y 2009 Nanotechnology 20 165202

    [24]

    Nie W Y, Tsai H H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D 2015 Science 347 522

    [25]

    Xie F X, Zhang D, Su H, Ren X, Wong K S, Grtzel M, Choy W C H 2015 ACS Nano 9 639

    [26]

    Bi C, Wang Q, Shao Y C, Yuan Y B, Xiao Z G, Huang J S 2015 Nat. Commun. 6 7747

    [27]

    Wojciechowski K, Stranks S D, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C Z, Friend R H, Jen A K Y, Snaith H J 2014 ACS Nano 8 12701

    [28]

    Zuo L, Gu Z, Ye T, Fu W, Wu G, Li H, Chen H 2015 J. Am. Chem. Soc. 137 2674

  • [1]

    Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B, Huang J S 2014 Adv. Mater. 26 6503

    [2]

    Takahashi Y, Hasegawa H, Takahashi Y, Inabe T 2013 J. Solid State Chem. 205 39

    [3]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [4]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623

    [5]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506

    [6]

    Kazim S, Nazeeruddin M K, Gratzel M, Ahmad S 2014 Angew. Chem. Int. Ed. 53 2812

    [7]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [8]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [9]

    You J, Hong Z, Yang Y M, Chen Q, Cai M, Song T B, Chen C C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS. Nano 8 1674

    [10]

    Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158

    [11]

    You J, Yang Y M, Hong Z, Song T B, Meng L, Liu Y, Jiang C, Zhou H, Chang W H, Li G, Yang Y 2014 Appl. Phys. Lett. 105 183902

    [12]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J, Jen A K 2014 Adv. Mater. 26 3748

    [13]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [14]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [15]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642

    [16]

    Shao Y C, Yuan Y B, Huang J S 2016 Nature Energy 1 15001

    [17]

    Liu Z H, Lee E C 2015 Organic Electronics. Lett. 24 101

    [18]

    Huang Y, Wen W, Mukherjee S, Ade H, Kramer E J, Bazan G C 2014 Adv. Mater. 26 4168

    [19]

    Wu C C, Wu C I, Sturm J C, Kahn A 1997 Appl. Phys. Lett. 70 1348

    [20]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environmental Science 7 2642

    [21]

    Bai Y, Yu H, Zhu Z L, Jiang K, Zhang T, Zhao N, Yang S H, Yan H 2015 Journal of Materials Chemistry A: Sci. 3 9098

    [22]

    Lakowicz L R 1999 Principles of Fluorescence Spectroscopy (New York: Kluwert Academic/Plenum Pyblishers)

    [23]

    Kumar A, Li G, Hong Z, Yang Y 2009 Nanotechnology 20 165202

    [24]

    Nie W Y, Tsai H H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D 2015 Science 347 522

    [25]

    Xie F X, Zhang D, Su H, Ren X, Wong K S, Grtzel M, Choy W C H 2015 ACS Nano 9 639

    [26]

    Bi C, Wang Q, Shao Y C, Yuan Y B, Xiao Z G, Huang J S 2015 Nat. Commun. 6 7747

    [27]

    Wojciechowski K, Stranks S D, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C Z, Friend R H, Jen A K Y, Snaith H J 2014 ACS Nano 8 12701

    [28]

    Zuo L, Gu Z, Ye T, Fu W, Wu G, Li H, Chen H 2015 J. Am. Chem. Soc. 137 2674

  • [1] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin. Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer. Acta Physica Sinica, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [3] Xu Jie, Feng Ze-Hua, Liu Bing-Ye, Zhu Xin-Yi, Dai Jin-Fei, Dong Hua, Wu Zhao-Xin. Preparation and optoelectronic characteristics of perovskite module devices in air assisted by polymer inner packaging layern. Acta Physica Sinica, 2023, 72(24): 248802. doi: 10.7498/aps.72.20231055
    [4] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [5] Zhong Ting-Ting, Zhang Chen, Shindume Lomboleni Hamukwaya, Xu Wang-Shu, Tang Kun-Peng, Xu Xiang, Sun Wen-Tian, Hao Hui-Ying, Dong Jing-Jing, Liu Hao, Xing Jie. Efficient and stable carbon-based CsPbBr3 solar cells added with PEABr additive. Acta Physica Sinica, 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [6] Sun Meng-Jie, He Zhi-Qun, Zheng Yi-Fan, Shao Yu-Chuan. Application of EDTA/SnO2 double-layer composite electron transport layer to perovskite solar cells. Acta Physica Sinica, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [7] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [8] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] Adopting PEABr additive to obtain efficient and stable carbon-based CsPbBr3 solar cells. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211344
    [10] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [11] Gan Yong-Jin, Jiang Qu-Bo, Qin Bin-Yi, Bi Xue-Guang, Li Qing-Liu. Carrier transport layers of tin-based perovskite solar cells. Acta Physica Sinica, 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [12] Zhang Chen, Zhang Hai-Yu, Hao Hui-Ying, Dong Jing-Jing, Xing Jie, Liu Hao, Shi Lei, Zhong Ting-Ting, Tang Kun-Peng, Xu Xiang. Morphology control of zinc oxide nanorods and its application as an electron transport layer in perovskite solar cells. Acta Physica Sinica, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [13] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [14] Xiao Hong-Yu, Liu Li-Na, Qin Yu-Kun, Zhang Dong-Mei, Zhang Yong-Sheng, Sui Yong-Ming, Liang Zhong-Zhu. Syntheses of B2O3-doped gem-diamond single crystals. Acta Physica Sinica, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [15] Cao Ru-Nan, Xu Fei, Zhu Jia-Bin, Ge Sheng, Wang Wen-Zhen, Xu Hai-Tao, Xu Run, Wu Yang-Lin, Ma Zhong-Quan, Hong Feng, Jiang Zui-Min. Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell. Acta Physica Sinica, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [16] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [17] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [18] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [19] Liu Bo-Zhi, Li Rui-Feng, Song Ling-Yun, Hu Lian, Zhang Bing-Po, Chen Yong-Yue, Wu Jian-Zhong, Bi Gang, Wang Miao, Wu Hui-Zhen. QD-LED devices using ZnSnO as an electron-transporting layer. Acta Physica Sinica, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [20] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
Metrics
  • Abstract views:  6262
  • PDF Downloads:  334
  • Cited By: 0
Publishing process
  • Received Date:  08 October 2016
  • Accepted Date:  13 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map