Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sub-diffraction-limit spatially structured light pattern based on polarized beam phase modulation

Yuan Qiang Zhao Wen-Xuan Ma Rui Zhang Chen Zhao Wei Wang Shuang Feng Xiao-Qiang Wang Kai-Ge Bai Jin-Tao

Citation:

Sub-diffraction-limit spatially structured light pattern based on polarized beam phase modulation

Yuan Qiang, Zhao Wen-Xuan, Ma Rui, Zhang Chen, Zhao Wei, Wang Shuang, Feng Xiao-Qiang, Wang Kai-Ge, Bai Jin-Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The sub-diffraction-limit spatially structured light patterns have attracted more and more attention for their important applications in many frontier scientific fields. The present paper aims at developing sub-diffraction-limit spatially structured beam patterns which might have great potential to improve the light performance in fields such as super resolution imagery, optical tweezer, micro/nano lithography, etc. Here, a variety of spatially structured beam patterns are obtained by the phase modulation of polarized beams and studied in detail experimentally and numerically. Firstly, a new kind of phase plate, which combines the merits of circular and vortex 2 phase plates, is proposed based on the wave front design; it is composed of two spiral-shaped phase plates with their phases changing from 0 to 2 and - to , respectively. Later, the phase plate is applied to the circularly polarized Gaussian beam modulation in a high NA system. By combining a self-made circular with a commercial vortex 2 phase plate, the designed new phase plate is implemented in the experiment. The morphology of the spatially structured light pattern, which is generated on the focal plane, is observed by a CCD camera in the experiment. The beam pattern presents a donut shape on the focal plane, while the dimension of the donut-shaped pattern becomes smaller as the imaging plane axially deviates from the focal plane. It is found that the beam patterns captured in experiment highly consist with the numerical simulation results carried out by the vectorial diffraction integral theory. It can be deduced that the spatially structured beam is capillary-shaped. Meanwhile, at the two ends of the capillary-shaped beam, the inner diameter is smaller than the diffraction limitation. Furthermore, the structured beam pattern presents a spatial voxel distribution with center and axis symmetry. Finally, the characteristics of the spatially structured beam patterns, which are generated by modulating circular, linear, radial and azimuthal polarized beams with the new designed phase plate, are analyzed and discussed in detail. It is found that for circular, linear, radial and azimuthal polarization, the full widths at half maximum (FWHMs) of the minimum dark spots in the horizontal direction are 0.31, 0.32, 0.24 and 0.36, respectively. On the optical axis, the FWHMs of the dark spots created by linearly, radially and azimuthally polarized light, are 0.8, 0.78 and 0.76 , respectively, and no axial intensity is found with circularly polarized beam incidence.
      Corresponding author: Zhang Chen, wangkg@nwu.edu.cn;nwuzchen@nwu.edu.cn ; Wang Kai-Ge, wangkg@nwu.edu.cn;nwuzchen@nwu.edu.cn
    • Funds: Project supported by Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 11504294), the National Natural Science Foundation of China (Grant No. 61378083), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91123030), the International Cooperation Foundation of the National Science and Technology Ministry of China (Grant No. 2011DFA12220), the Youth Talent Plan of the Natural Science Foundation of Shaanxi Province of China (Grant No. 2016JQ1030), and the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 14JS106, 2013SZS03-Z01).
    [1]

    Chattopadhyay S, Huangy Y F, Jen Y, Ganguly A, Chen K H, Chen L C 2010 Mat. Sci. Eng. R 69 1

    [2]

    Yang H F, He H D, Zhao E L, Han J, Hao J B, Qian J G, Tang W, Zhu H 2014 Laser Phys. 24 065901

    [3]

    Zhou Z H, Zhu L Q 2016 Chin. Phys. B 25 118

    [4]

    An S, Peng T, Zhou X, Han G X, Huang Z X, Yu X H, Cai Y N, Yao B L, Zhang P 2017 Acta Phys. Sin. 66 010702 (in Chinese) [安莎, 彭彤, 周兴, 韩国霞, 黄张翔, 于湘华, 蔡亚楠, 姚保利, 张鹏 2017 66 010702]

    [5]

    Westphal V, Kastrup L, Hell S W 2003 Appl. Phys. B 77 377

    [6]

    Westphal V, Hell S W 2005 Phys. Rev. Lett. 94 143903

    [7]

    Rittwegere E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144

    [8]

    Li S, Kuang C F, Ding Z H, Hao X, Gu Z T, Ge J H, Liu X 2013 Acta Laser Biology Sinica 22 103

    [9]

    Wildanger D, Patton B R, Schil H, Marseglia L, Hadden J P 2012 Adv. Mater. 24 309

    [10]

    Sakai K, Noda S 2007 Electron. Lett. 43 107

    [11]

    Yao B L, Yan S H, Ye T, Zhao W 2010 Chin. Phys. Lett. 27 224

    [12]

    Sun Y L, Zhao Y Q, Zhan Q W, Li Y P 2006 Acta Phys. Sin. 55 1253 (in Chinese) [孙艳丽, 赵逸琼, 詹其文, 李永平 2006 55 1253]

    [13]

    Cao Y, Gan Z, Jia B, Evans R A, Gu M 2011 Opt. Express 19 19486

    [14]

    Dong X Z, Chen W Q, Zhao Z S, Duan X M 2008 Chin. Sci. Bull. 53 2 (in Chinese) [董贤子, 陈卫强, 赵震声, 段宣明 2008 科学通报 53 2]

    [15]

    Dai N G, Xuan M D, Ding P, Jia H Q, Zhou J M, Chen H 2013 Acta Phys. Sin. 62 156104 (in Chinese) [戴隆贵, 禤铭冬, 丁芃, 贾海强, 周均铭, 陈宏 2013 62 156104]

    [16]

    Zhang C, Wang K G, Bai J T, Wang S, Zhao W, Yang F, Gu C Z, Wang G R 2013 Nanoscale Res. Lett. 8 1

    [17]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321

    [18]

    Hotta J, Uji-I H, Hofkens J 2006 Opt. Express 14 6273

    [19]

    Bingen P, Reuss M, Engelhardt J, Hell S W 2011 Opt. Express 19 23716

    [20]

    Ren Y X, Li M, Huang K, Wu J G, Gao H F, Wang Z Q, Li Y M 2010 Appl. Opt. 49 1838

    [21]

    Qian J, Lei M, Dan D, Yao B L, Zhou X, Yang Y L, Yan S H, Min J W, Yu X H 2015 Sci. Rep. 5 14513

    [22]

    Hermerschmidt A, Krger S, Haist T, Zwick S, Warber M, Osten W 2008 Proceedings of SPIE San Jose, CA, January 19, 2008 p690508

    [23]

    Leonardo R D, Ianni F, Ruocco G 2007 Opt. Express 15 1913

  • [1]

    Chattopadhyay S, Huangy Y F, Jen Y, Ganguly A, Chen K H, Chen L C 2010 Mat. Sci. Eng. R 69 1

    [2]

    Yang H F, He H D, Zhao E L, Han J, Hao J B, Qian J G, Tang W, Zhu H 2014 Laser Phys. 24 065901

    [3]

    Zhou Z H, Zhu L Q 2016 Chin. Phys. B 25 118

    [4]

    An S, Peng T, Zhou X, Han G X, Huang Z X, Yu X H, Cai Y N, Yao B L, Zhang P 2017 Acta Phys. Sin. 66 010702 (in Chinese) [安莎, 彭彤, 周兴, 韩国霞, 黄张翔, 于湘华, 蔡亚楠, 姚保利, 张鹏 2017 66 010702]

    [5]

    Westphal V, Kastrup L, Hell S W 2003 Appl. Phys. B 77 377

    [6]

    Westphal V, Hell S W 2005 Phys. Rev. Lett. 94 143903

    [7]

    Rittwegere E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144

    [8]

    Li S, Kuang C F, Ding Z H, Hao X, Gu Z T, Ge J H, Liu X 2013 Acta Laser Biology Sinica 22 103

    [9]

    Wildanger D, Patton B R, Schil H, Marseglia L, Hadden J P 2012 Adv. Mater. 24 309

    [10]

    Sakai K, Noda S 2007 Electron. Lett. 43 107

    [11]

    Yao B L, Yan S H, Ye T, Zhao W 2010 Chin. Phys. Lett. 27 224

    [12]

    Sun Y L, Zhao Y Q, Zhan Q W, Li Y P 2006 Acta Phys. Sin. 55 1253 (in Chinese) [孙艳丽, 赵逸琼, 詹其文, 李永平 2006 55 1253]

    [13]

    Cao Y, Gan Z, Jia B, Evans R A, Gu M 2011 Opt. Express 19 19486

    [14]

    Dong X Z, Chen W Q, Zhao Z S, Duan X M 2008 Chin. Sci. Bull. 53 2 (in Chinese) [董贤子, 陈卫强, 赵震声, 段宣明 2008 科学通报 53 2]

    [15]

    Dai N G, Xuan M D, Ding P, Jia H Q, Zhou J M, Chen H 2013 Acta Phys. Sin. 62 156104 (in Chinese) [戴隆贵, 禤铭冬, 丁芃, 贾海强, 周均铭, 陈宏 2013 62 156104]

    [16]

    Zhang C, Wang K G, Bai J T, Wang S, Zhao W, Yang F, Gu C Z, Wang G R 2013 Nanoscale Res. Lett. 8 1

    [17]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321

    [18]

    Hotta J, Uji-I H, Hofkens J 2006 Opt. Express 14 6273

    [19]

    Bingen P, Reuss M, Engelhardt J, Hell S W 2011 Opt. Express 19 23716

    [20]

    Ren Y X, Li M, Huang K, Wu J G, Gao H F, Wang Z Q, Li Y M 2010 Appl. Opt. 49 1838

    [21]

    Qian J, Lei M, Dan D, Yao B L, Zhou X, Yang Y L, Yan S H, Min J W, Yu X H 2015 Sci. Rep. 5 14513

    [22]

    Hermerschmidt A, Krger S, Haist T, Zwick S, Warber M, Osten W 2008 Proceedings of SPIE San Jose, CA, January 19, 2008 p690508

    [23]

    Leonardo R D, Ianni F, Ruocco G 2007 Opt. Express 15 1913

  • [1] Wei Jia-Xin, Sha Peng-Fei, Fang Xu-Chen, Lu Zeng-Xiong, Li Hui, Tan Fang-Rui, Wu Xiao-Bin. Illumination homogenization of highly coherent light source based on phase modulation. Acta Physica Sinica, 2024, 73(15): 154101. doi: 10.7498/aps.73.20240644
    [2] Pang Nai-Qi, Wang Yin, Ge Yong, Shi Bin-Jie, Yuan Shou-Qi, Sun Hong-Xiang. Broadband acoustic triggers based on multiport waveguide structures. Acta Physica Sinica, 2023, 72(16): 164301. doi: 10.7498/aps.72.20230594
    [3] Fan Yu-Ting, Zhu En-Xu, Zhao Chao-Ying, Tan Wei-Han. Dynamic generation of vortex beam based on partial phase modulation of electro-optical crystal plate. Acta Physica Sinica, 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [4] Luo Wen, Chen Tian-Jiang, Zhang Fei-Zhou, Zhou Kai, An Jian-Zhu, Zhang Jian-Zhu. Active illumination uniformity with narrow spectrum laser based on ladderlike phase modulation. Acta Physica Sinica, 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [5] Xiao Hong-Jing, Huang Chao, Tang Yu-Long, Xu Jian-Qiu. Generation and characteristics of shock optical pulses based on a fiber-loop time-lens system. Acta Physica Sinica, 2019, 68(15): 154201. doi: 10.7498/aps.68.20190246
    [6] Dai Shu-Tao, Jiang Tao, Wu Li-Xia, Wu Hong-Chun, Lin Wen-Xiong. Single-axial-mode Nd:YAG laser with precisely controllable laser pulse output time. Acta Physica Sinica, 2019, 68(13): 134202. doi: 10.7498/aps.68.20190393
    [7] Du Jun, Yang Na, Li Jun-Ling, Qu Yan-Chen, Li Shi-Ming, Ding Yun-Hong, Li Rui. Improvement of phase modulation laser Doppler shift measurement method. Acta Physica Sinica, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [8] Liu Ya-Kun, Wang Xiao-Lin, Su Rong-Tao, Ma Peng-Fei, Zhang Han-Wei, Zhou Pu, Si Lei. Effect of phase modulation on linewidth and stimulated Brillouin scattering threshold of narrow-linewidth fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [9] Zhang Xin-Zheng, Xia Feng, Xu Jing-Jun. The mechanisms and research progress of laser fabrication technologies beyond diffraction limit. Acta Physica Sinica, 2017, 66(14): 144207. doi: 10.7498/aps.66.144207
    [10] Zhang Li-Ming, Zhou Shou-Huan, Zhao Hong, Zhang Kun, Hao Jin-Ping, Zhang Da-Yong, Zhu Chen, Li Yao, Wang Xiong-Fei, Zhang Hao-Bin. 780 W narrow linewidth all fiber laser. Acta Physica Sinica, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [11] Liu Shuang-Long, Liu Wei, Chen Dan-Ni, Niu Han-Ben. Generation of dark hollow beams used in sub-diffraction-limit imaging in coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [12] Du Jun, Zhao Wei-Jiang, Qu Yan-Chen, Chen Zhen-Lei, Geng Li-Jie. Laser Doppler shift measuring method based on phase modulater and Fabry-Perot interferometer. Acta Physica Sinica, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [13] Qi Xiao-Qing, Gao Chun-Qing, Xin Jing-Tao, Zhang Ge. Experimental study of 8-bits information transmission system based on orbital angular momentum of light beams. Acta Physica Sinica, 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [14] Su Qian-Qian, Zhang Guo-Wen, Pu Ji-Xiong. The propagation characteristics of a Gaussian beam passing through the thick nonlinear medium with defects. Acta Physica Sinica, 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [15] Luo Bo-Wen, Dong Jian-Ji, Wang Xiao, Huang De-Xiu, Zhang Xin-Liang. Multi-channel multifunctional optical differentiator based on phase modulation and linear filtering. Acta Physica Sinica, 2012, 61(9): 094213. doi: 10.7498/aps.61.094213
    [16] MaYan-Xing, Wang Xiao-Lin, Zhou Pu, Ma Hao-Tong, Zhao Hai-Chuan, Xu Xiao-Jun, Si Lei, Liu Ze-Jin, Zhao Yi-Jun. Effect of atmosphere turbulence on phase modulation signals in coherent beam combination with multi-dithering technique. Acta Physica Sinica, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [17] Huang Xiao-Dong, Zhang Xiao-Min, Wang Jian-Jun, Xu Dang-Peng, Zhang Rui, Lin Hong-Huan, Deng Ying, Geng Yuan-Chao, Yu Xiao-Qiu. The effect of dispersion on FM-AM coversion in high power laser front end. Acta Physica Sinica, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [18] Zhu Chang-Xing, Feng Yan-Ying, Ye Xiong-Ying, Zhou Zhao-Ying, Zhou Yong-Jia, Xue Hong-Bo. The absolute rotation measurement of atom interferometer by phase modulation. Acta Physica Sinica, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [19] Cai Dong-Mei, Ling Ning, Jiang Wen-Han. The performance of phase-only liquid crystal spatial light modulator used for generating Zernike terms. Acta Physica Sinica, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [20] Xie Yi-Qun, Guo Qi. Interaction between optical spatial solitons in nonlocal Kerr media. Acta Physica Sinica, 2004, 53(9): 3020-3024. doi: 10.7498/aps.53.3020
Metrics
  • Abstract views:  6848
  • PDF Downloads:  339
  • Cited By: 0
Publishing process
  • Received Date:  01 January 2017
  • Accepted Date:  10 April 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map