-
Analysis of the DC current-voltage (I-V) characteristics is an effective approach to investigate the charge transport properties in a solar cell. The perovskite solar cell attracted wide research interest in the past two years due to their outstanding photovoltaic capacity. However, the charge transport characteristics and working principles of this kind of cells have not been clearly clarified. In this work, the I-V characteristics of the perovskite solar cell have been investigated from the experimental and theoretical perspective views. Moreover, the S-shaped I-V feature coming from the limitation of interfacial charge transport was focused on. With a series connected diode model, the I-V characteristics of the solar cell are investigated and simulated. It is found that the charge accumulation appears gradually when the interfacial charge transport velocity is decreased, lowering the output of the cell. When the interfacial charge transport decreases gradually, the short-circuit current density and the fill factor of the cell also decrease obviously. In experiments, limitations of charge transport at the front and back contacts of the cell have been designed, successfully producing varied S-shaped I-V features. It is found that both in the hole transport material-free and in the p-i-n perovskite solar cells, the S-shaped I-V characteristics can appear. Moreover, the origins of these features in various experimental conditions have also been discussed, which can be the energy barriers or large charge transport resistances in the cell. These energy barriers and resistances will lower the charge transport velocity and may cause charge accumulation, thus leading to the appearence of the S-shaped features. Meanhiwle, the emerging S-shaped I-V curves all have their own features, which may be due to the specific interfacial energy band structures. Thus, to promote the cell performance, the charge transport and interface energy barrier should be attached importance to and carefully designed. This work directly shows the interface factors that can significantly affect the cell performance, and gives a theoretical guide in cell design. By considering these limiting factors, the cell fabrication has been carefully designed with the control on the thickness of the mesoporous layer and the perovskite absorber film deposition, and a forward-swept efficiency of 15.5% can be achieved without any modification of the cell.
-
Keywords:
- perovskite solar cell /
- interfacial charge transport /
- S-shaped current-voltage characteristics
[1] Sze S M, Kwok K Ng 2006 Physics of Semiconductor Devices (New York: John Wiley & Sons, Ltd)
[2] Jiang J P, Sun C C 2010 Heterojunction Principles and Devices (Beijing: Publishing house of electronics industry) (in Chinese) [江剑平 孙成城 2010 异质结原理与器件 (北京:电子工业出版社)]
[3] Luque A, Hegedus S 2011 Handbook of Photovoltaic Science and Engineering (UK: John Wiley & Sons, Ltd)
[4] Steven H, Shafarman W N 2004 Prog. Photovolt.: Res. Appl. 12 155
[5] Kojima A, Toshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[6] Kim H S, Lee C R. Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591
[7] Burschka J, Pellet N, Moon S J, Baker R H, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316
[8] Liu M, Johnston B, Snaith H J 2013 Nature 501 395
[9] Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542
[10] Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J 2014 Energy Environ. Sci. 7 2619
[11] Im J H, Jang I H, Pellet N, Grätzel M, Park N G 2014 Nat. Nanotech. 9 927
[12] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S Il 2014 Nat. Mater. 13 897
[13] You J, Hong Z, Yang Y, Chen Q, Cai M, Song T, Chen C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS Nano 8 1674
[14] Docampo P, Ball J M, Daewich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761
[15] Liu D, Kelly T L 2014 Nat. Photon. 8 133
[16] Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249
[17] Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901
[18] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H 2014 Science 345 295
[19] Wei Z, Chen H, Yan K, Yang S H 2014 Angew. Chem. Int. Ed. DOI: 10.1002anie.201408638
[20] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
[21] Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306
[22] Gupta D, Bag M, Narayan K S 2008 Appl. Phys. Lett. 92 093301
[23] Shi J, Luo Y, Wei H, Luo J, Dong J, Lv S, Xiao J, Xu Y, Zhu L, Xu X, Wu H, Li D, Meng Q 2014 ACS Appl. Mater. Interf. 6 9711
[24] Gupta D, Mukhopadhyay S, Narayan K S 2010 Solar Energy Mater. Solar Cells 94 1309
[25] Wang L, McCleese C, Kovalsky A, Zhao Y, Burda C 2014 J. Am. Chem. Soc. 136 12205
-
[1] Sze S M, Kwok K Ng 2006 Physics of Semiconductor Devices (New York: John Wiley & Sons, Ltd)
[2] Jiang J P, Sun C C 2010 Heterojunction Principles and Devices (Beijing: Publishing house of electronics industry) (in Chinese) [江剑平 孙成城 2010 异质结原理与器件 (北京:电子工业出版社)]
[3] Luque A, Hegedus S 2011 Handbook of Photovoltaic Science and Engineering (UK: John Wiley & Sons, Ltd)
[4] Steven H, Shafarman W N 2004 Prog. Photovolt.: Res. Appl. 12 155
[5] Kojima A, Toshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[6] Kim H S, Lee C R. Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591
[7] Burschka J, Pellet N, Moon S J, Baker R H, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316
[8] Liu M, Johnston B, Snaith H J 2013 Nature 501 395
[9] Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542
[10] Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J 2014 Energy Environ. Sci. 7 2619
[11] Im J H, Jang I H, Pellet N, Grätzel M, Park N G 2014 Nat. Nanotech. 9 927
[12] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S Il 2014 Nat. Mater. 13 897
[13] You J, Hong Z, Yang Y, Chen Q, Cai M, Song T, Chen C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS Nano 8 1674
[14] Docampo P, Ball J M, Daewich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761
[15] Liu D, Kelly T L 2014 Nat. Photon. 8 133
[16] Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249
[17] Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901
[18] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H 2014 Science 345 295
[19] Wei Z, Chen H, Yan K, Yang S H 2014 Angew. Chem. Int. Ed. DOI: 10.1002anie.201408638
[20] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
[21] Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306
[22] Gupta D, Bag M, Narayan K S 2008 Appl. Phys. Lett. 92 093301
[23] Shi J, Luo Y, Wei H, Luo J, Dong J, Lv S, Xiao J, Xu Y, Zhu L, Xu X, Wu H, Li D, Meng Q 2014 ACS Appl. Mater. Interf. 6 9711
[24] Gupta D, Mukhopadhyay S, Narayan K S 2010 Solar Energy Mater. Solar Cells 94 1309
[25] Wang L, McCleese C, Kovalsky A, Zhao Y, Burda C 2014 J. Am. Chem. Soc. 136 12205
Catalog
Metrics
- Abstract views: 12130
- PDF Downloads: 2594
- Cited By: 0