搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性

曹汝楠 徐飞 朱佳斌 葛升 王文贞 徐海涛 徐闰 吴杨琳 马忠权 洪峰 蒋最敏

引用本文:
Citation:

平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性

曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏

Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell

Cao Ru-Nan, Xu Fei, Zhu Jia-Bin, Ge Sheng, Wang Wen-Zhen, Xu Hai-Tao, Xu Run, Wu Yang-Lin, Ma Zhong-Quan, Hong Feng, Jiang Zui-Min
PDF
导出引用
  • 本文研究了钙钛矿太阳能电池不同工作温度下光伏性能的时间响应特性. 结果表明,钙钛矿太阳能电池光伏性能需要经过一段时间光照后才能达到稳定. 且随着工作温度降低,电池光伏性能达到稳定所需的响应时间也越长. 当电池达到稳定后,电池开路电压会随着温度降低而增大. 在此之前,开路电压会在低温下发生显著的衰减. 这意味着钙钛矿太阳能电池的时间响应主要来源于其内部内建电场的缓慢变化. 通过测量光照前后电池外量子效率发现,光生载流子的分离和收集效率会在光照后得到明显改善. 这也暗示了内建电场在光照前后发生了改变. 钙钛矿材料中的离子迁移被认为是引起内建电场发生变化的原因. 这有助于更好地理解钙钛矿太阳能电池中载流子输运机制.
    In recent years, perovskite solar cell (PSC) has achieved power conversion efficiency as high as over 20 %, making it competitive with high-efficiency thin film solar cells such as CuInGaSe and CdTe solar cells. However, the critical issue of reliability and stability for PSC should be addressed since a significant degradation of photovoltaic (PV) performance at low temperature has been found regardless of planar mesoporous PSC. To reveal the degradation of PV performance in PSC, the temperature-dependent PV performance of the planar PSC is investigated in detail. A PSC sample is loaded into a cryostat chamber connected to a compressor and illuminated by a halogen lamp. The operating temperature varies from 200 K to 325 K and the current-voltage (J-V) characteristic of planar PSC is measured at different scan rates from 10 V/s to 0.0017 V/s. At a fast scan rate of 10 V/s, the PSC shows a low PV performance at either low temperature or high temperature. The short-circuit current (JSC), open-circuit voltage (VOC) and maximum power point (PMPP) are found to decline with the temperature decrteasing. Moreover, the J-V curve also shows the S-shape characteristic. This suggests that the inefficient transport of photo-generated carriers occurs in the PSC. Ions such as Pb2+, CH3NH3+ and I-vacancies cause the screening effect of built-in field and the photo-generated carriers cannot be separated nor collected efficiently. As a result, JSC and VOC show small values in J-V curves measured at a fast scan rate. However, the degradation in PV performance is temporary. The PV performance gradually reaches a steady state at different operating temperatures with scan rate going down to 0.0017 V/s. The PMPP and VOC increase with temperature decreasing. These results indicate that a long illumination time is necessary for PSC to reach a steady state. After long-time illumination under biased condition (i.e., J-V curves measured at slow scan rate), the built-in field is compensated for by the external bias and the ions piling in the interface regions have enough time to diffuse towards the opposite direction. Thus, the screening effect of built-in field is reduced and the PV performance of PSC reaches a steady state. According to the result of device simulation, the increasing VOC at low temperature is attributed to the enhanced built-in potential difference and the reduced recombination rate of carriers. The temperature-dependent external quantum efficiency measurements of planar PSC before and after light illuminationis are performed to investigate the mechanism of carrier transport. It reveals that the separation and collection efficiencies of photo-generated carriers can be improved significantly after light illumination due to the fact that the screening effect of built-in field is reduced. These findings help understand the carrier transport mechanism in planar PSC.
      通信作者: 徐飞, feixu@staff.shu.edu.cn;runxu@staff.shu.edu.cn ; 徐闰, feixu@staff.shu.edu.cn;runxu@staff.shu.edu.cn
    • 基金项目: 复旦大学应用表面物理国家重点实验室(批准号:KF2015_01)和国家自然科学基金(批准号:61274067,60876045)资助的课题.
      Corresponding author: Xu Fei, feixu@staff.shu.edu.cn;runxu@staff.shu.edu.cn ; Xu Run, feixu@staff.shu.edu.cn;runxu@staff.shu.edu.cn
    • Funds: Project supported by the State Key Laboratory of Surface Physics of Fudan University, China (Grant No. KF2015_01) and the National Natural Science Foundation of China (Grant Nos. 61274067, 60876045).
    [1]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [2]

    La-o-vorakiat C, Salim T, Kadro J, Khuc M T, Haselsberger R, Cheng L, Xia H, Gurzadyan G G, Su H, Lam Y M, Marcus R A, Michel-Beyerle M E, Chia E E M 2015 Nat. Commun. 6 7903

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [5]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234

    [6]

    Zhang H, Qiao X, Shen Y, Moehl T, Zakeeruddin S M, Gratzel M, Wang M 2015 J. Mater. Chem. A 3 11762

    [7]

    Cojocaru L, Uchida S, Sanehira Y, Gonzalez-Pedro V, Bisquert J, Nakazaki J, Kubo T, Segawa H 2015 Chem. Lett. 44 1557

    [8]

    Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, De Angelis F 2014 J. Phys. Chem. Lett. 5 2662

    [9]

    Ge S, Xu H, Wang W, Cao R, Wu Y, Xu W, Zhu J, Xue F, Hong F, Xu R, Xu F, Wang L, Huang J 2016 Vacuum 128 91

    [10]

    Ono L K, Raga S R, Wang S, Kato Y, Qi Y 2015 J. Mater. Chem. A 3 9074

    [11]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [12]

    Huang J, Wang H, Qi Y, Yu J 2014 Appl. Phys. Lett. 104 203301

    [13]

    Zou Y, Holmes R J 2013 Appl. Phys. Lett. 103 053302

    [14]

    Shi J J, Wei H Y, Zhu L F, Xu X, Xu Y Z, L S T, Wu H J, Luo Y H, Li D M, Meng Q B 2015 Acta Phys. Sin. 64 038402 (in Chinese) [石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波 2015 64 038402]

    [15]

    Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J 2015 Nat. Mater. 14 193

    [16]

    Zhao C, Chen B, Qiao X, Luan L, Lu K, Hu B 2015 Adv. Energy Mater. 5 1500279

    [17]

    Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306

    [18]

    Yuan Y, Xu R, Xu H T, Hong F, Xu F, Wang L J 2015 Chin. Phys. B 24 116302

    [19]

    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2015 IEEE J. Photovoltaics 5 401

    [20]

    Minemoto T, Murata M 2015 Sol. Energy Mater. Sol. Cells 133 8

    [21]

    Liu F, Zhu J, Wei J, Li Y, L M, Yang S, Zhang B, Yao J, Dai S 2014 Appl. Phys. Lett. 104 253508

    [22]

    Rana O, Srivastava R, Grover R, Zulfequar M, Husain M, Kamalasanan M N 2011 Synth. Met. 161 828

    [23]

    Zhao S R, Huang Z P, Sun L, Sun P C, Zhang C J, Wu Y H, Cao H, Wang S L, Zhu J H 2013 Acta Phys. Sin. 62 188801 (in Chinese) [赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩 2013 62 188801]

    [24]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kukihara K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984

    [25]

    Leijtens T, Srimath Kandada A R, Eperon G E, Grancini G, D'Innocenzo V, Ball J M, Stranks S D, Snaith H J, Petrozza A 2015 J. Am. Chem. Soc. 137 15451

    [26]

    Lai T H, Tsang S W, Manders J R, Chen S, So F 2013 Mater. Today 16 424

    [27]

    Xu L, Lee Y J, Hsu J W P 2014 Appl. Phys. Lett. 105 123904

  • [1]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [2]

    La-o-vorakiat C, Salim T, Kadro J, Khuc M T, Haselsberger R, Cheng L, Xia H, Gurzadyan G G, Su H, Lam Y M, Marcus R A, Michel-Beyerle M E, Chia E E M 2015 Nat. Commun. 6 7903

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [5]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234

    [6]

    Zhang H, Qiao X, Shen Y, Moehl T, Zakeeruddin S M, Gratzel M, Wang M 2015 J. Mater. Chem. A 3 11762

    [7]

    Cojocaru L, Uchida S, Sanehira Y, Gonzalez-Pedro V, Bisquert J, Nakazaki J, Kubo T, Segawa H 2015 Chem. Lett. 44 1557

    [8]

    Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, De Angelis F 2014 J. Phys. Chem. Lett. 5 2662

    [9]

    Ge S, Xu H, Wang W, Cao R, Wu Y, Xu W, Zhu J, Xue F, Hong F, Xu R, Xu F, Wang L, Huang J 2016 Vacuum 128 91

    [10]

    Ono L K, Raga S R, Wang S, Kato Y, Qi Y 2015 J. Mater. Chem. A 3 9074

    [11]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [12]

    Huang J, Wang H, Qi Y, Yu J 2014 Appl. Phys. Lett. 104 203301

    [13]

    Zou Y, Holmes R J 2013 Appl. Phys. Lett. 103 053302

    [14]

    Shi J J, Wei H Y, Zhu L F, Xu X, Xu Y Z, L S T, Wu H J, Luo Y H, Li D M, Meng Q B 2015 Acta Phys. Sin. 64 038402 (in Chinese) [石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波 2015 64 038402]

    [15]

    Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J 2015 Nat. Mater. 14 193

    [16]

    Zhao C, Chen B, Qiao X, Luan L, Lu K, Hu B 2015 Adv. Energy Mater. 5 1500279

    [17]

    Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306

    [18]

    Yuan Y, Xu R, Xu H T, Hong F, Xu F, Wang L J 2015 Chin. Phys. B 24 116302

    [19]

    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2015 IEEE J. Photovoltaics 5 401

    [20]

    Minemoto T, Murata M 2015 Sol. Energy Mater. Sol. Cells 133 8

    [21]

    Liu F, Zhu J, Wei J, Li Y, L M, Yang S, Zhang B, Yao J, Dai S 2014 Appl. Phys. Lett. 104 253508

    [22]

    Rana O, Srivastava R, Grover R, Zulfequar M, Husain M, Kamalasanan M N 2011 Synth. Met. 161 828

    [23]

    Zhao S R, Huang Z P, Sun L, Sun P C, Zhang C J, Wu Y H, Cao H, Wang S L, Zhu J H 2013 Acta Phys. Sin. 62 188801 (in Chinese) [赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩 2013 62 188801]

    [24]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kukihara K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984

    [25]

    Leijtens T, Srimath Kandada A R, Eperon G E, Grancini G, D'Innocenzo V, Ball J M, Stranks S D, Snaith H J, Petrozza A 2015 J. Am. Chem. Soc. 137 15451

    [26]

    Lai T H, Tsang S W, Manders J R, Chen S, So F 2013 Mater. Today 16 424

    [27]

    Xu L, Lee Y J, Hsu J W P 2014 Appl. Phys. Lett. 105 123904

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应.  , 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池.  , 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [3] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能.  , 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [4] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究.  , 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [5] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究.  , 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [6] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池.  , 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [7] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展.  , 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [8] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制.  , 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究.  , 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [10] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展.  , 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [11] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性.  , 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [12] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制.  , 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [13] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展.  , 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [14] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究.  , 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究.  , 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [16] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展.  , 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展.  , 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [18] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展.  , 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [19] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究.  , 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究.  , 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
计量
  • 文章访问数:  7987
  • PDF下载量:  430
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-27
  • 修回日期:  2016-05-26
  • 刊出日期:  2016-09-05

/

返回文章
返回
Baidu
map