-
锡基钙钛矿太阳能电池可避免铅元素对环境带来的污染, 近年来已成为光伏领域的研究热点. 本文以SCAPS-1D太阳能电池数值模拟软件为平台, 对不同电子传输层和不同空穴传输层的锡基钙钛矿太阳能电池器件的性能进行数值仿真对比, 从理论上分析不同载流子传输层的锡基钙钛矿太阳能电池的性能差异. 结果显示, 载流子传输层与钙钛矿层的能带对齐对电池性能至关重要. 电子传输层具有更高的导带或电子准费米能级以及空穴传输层具有更低的价带或空穴准费米能级时, 对电池输出更大的开路电压有促进作用. 另外, 当电子传输层的导带高于钙钛矿层导带或钙钛矿层的价带高于空穴传输层的价带时, 钙钛矿层与载流子传输层界面形成spike势垒, 界面复合机制相对较弱, 促使电池获得更佳的性能. 当Cd0.5Zn0.5S和MASnBr3分别作为电子传输层和空穴传输层时, 与其他材料相比, 获得了更优的输出特性: 开路电压Voc = 0.94 V, 短路电流密度Jsc = 30.35 mA/cm2, 填充因子FF = 76.65%, 功率转换效率PCE = 21.55%, 可认为Cd0.5Zn0.5S和MASnBr3是设计锡基钙钛矿太阳能电池结构合适的载流子传输层材料. 这些模拟结果有助于实验上设计并制备高性能的锡基钙钛矿太阳能电池.
-
关键词:
- 锡基钙钛矿太阳能电池 /
- 准费米能级 /
- 电子传输层 /
- 空穴传输层
To avoid environmental pollution caused by lead, the tin-based perovskite solar cells have become a research hotspot in the photovoltaic field. Numerical simulations of tin-based perovskite solar cells are conducted by the solar cell simulation software, SCAPS-1D, with different electron transport layers and hole transport layers. And then the performances of perovskite solar cells are compared with each other and analyzed on different carrier transport layers. The results show that band alignment between the carrier transport layer and the perovskite layer are critical to cell performances. A higher conduction band or electronic quasi-Fermi level of electron transport layer can lead to a higher open circuit voltage. Similarly, a lower valence band or hole quasi-Fermi level of hole transport layer can also promote a higher open circuit voltage. In addition, when the conduction band of electron transport layer is higher than that of the absorber, a spike barrier is formed at the interface between the electron transport layer and perovskite layer. Nevertheless, a spike barrier is formed at the interface between the perovskite layer and the hole transport layer if the valence band of hole transport layer is lower than that of the absorber. However, if the conduction band of electron transport layer is lower than that of the absorber or the valence band of hole transport layer is higher than that of the absorber, a cliff barrier is formed. Although the transport of carrier is hindered by spike barrier compared with cliff barrier, the activation energy for carrier recombination becomes lower than the bandgap of the perovskite layer, leading to the weaker interface recombination and the better performance. Comparing with other materials, satisfying output parameters are obtained when Cd0.5Zn0.5S and MASnBr3 are adopted as the electron transport layer and the hole transport layer, respectively. The better performances are obtained as follows: Voc = 0.94 V, Jsc = 30.35 mA/cm2, FF = 76.65%, and PCE = 21.55%, so Cd0.5Zn0.5S and MASnBr3 are suitable carrier transport layer materials. Our researches can help to design the high-performance tin-based perovskite solar cells.-
Keywords:
- tin-based perovskite solar cell /
- quasi-Fermi level /
- electron transport layer /
- hole transport layer
[1] Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151Google Scholar
[2] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar
[3] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军 2020 69 057901Google Scholar
Liang X J, Cao Y, Cai H K, Su J, Ni J, Li J, Zhang J J 2020 Acta Phys. Sin. 69 057901Google Scholar
[4] Conings B, Drijkoningen J, Gauquelin N, et al. 2015 Adv. Energy Mater. 5 1500477Google Scholar
[5] Wang R, Mujahid M, Duan Y, Wang Z K, Xue J, Yang Y 2019 Adv. Funct. Mater. 29 1808843Google Scholar
[6] Wang Q, Phung N, Di Girolamo D, Vivo P, Abate A 2019 Energy Environ. Sci. 12 865Google Scholar
[7] Liang J, Liu J, Jin Z 2017 Solar RRL 1 1700086Google Scholar
[8] Yang T C, Fiala P, Jeangros Q, Ballif C 2018 Joule 2 1421Google Scholar
[9] Chen H, Xiang S, Li W, Liu H, Zhu L, Yang S 2018 Solar RRL 2 1700188Google Scholar
[10] Song T, Yokoyama T, Aramaki S, Kanatzidis M G 2017 ACS Energy Letters 2 897Google Scholar
[11] Green MA, Ho-Baillie A, Snaith HJ 2014 Nat. Photonics 8 506Google Scholar
[12] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[13] Baig F, Khattak Y H, Marí B, Beg S, Ahmed A, Khan K 2018 J. Electron. Mater. 47 5275Google Scholar
[14] Chen M, Ju M, Carl A D, Zong Y, Grimm R L, Gu J, Zeng X C, Zhou Y, Padture N P 2018 Joule 2 558Google Scholar
[15] Chakraborty K, Choudhury MG, Paul S 2019 Sol. Energy 194 886Google Scholar
[16] Islam M A, Rahman K S, Misran H, Asim N, Hossain M S, Akhtaruzzaman M, Amin N 2019 Results Phys. 14 102518Google Scholar
[17] Lakhdar N, Hima A 2020 Opt. Mater. 99 109517Google Scholar
[18] Azri F, Meftah A, Sengouga N, Meftah A 2019 Sol. Energy 181 372Google Scholar
[19] Sajid, Elseman A M, Ji J, Dou S, Huang H, Cui P, Wei D, Li M 2018 Chin. Phys. B 27 80Google Scholar
[20] Minemoto T, Murata M 2014 Curr. Appl. Phys. 14 1428Google Scholar
[21] Teimour R, Mohammadpour R 2018 Superlattices Microstruct. 118 116Google Scholar
[22] Du H J, Wang W C, Zhu J Z 2016 Chin. Phys. B 25 108802Google Scholar
[23] Chouhan A S, Jasti N P, Avasthi S 2018 Mater. Lett. 221 150Google Scholar
[24] Huang S, Rui Z, Chi D, Bao D 2019 Journal of Semiconductors 40 19Google Scholar
[25] Lin L Y, Jiang L Q, Qiu Y, Fan B D 2018 J. Phys. Chem. Solids 122 19Google Scholar
[26] Lin L Y, Jiang L Q, Li P, Fan B D, Qiu Y 2019 J. Phys. Chem. Solids 124 205Google Scholar
[27] Wang D, Wu C, Luo W, Guo X, Qu B, Xiao L, Chen Z 2018 ACS Appl. Energy Mater. 1 2215Google Scholar
[28] Minemoto T, Murata M 2015 Sol. Energy Mater. Sol. Cells 133 8Google Scholar
[29] Klenk R 2001 Thin Solid Films 387 135Google Scholar
[30] Gloeckler M, Sites J 2005 Thin Solid Films 480 241Google Scholar
[31] Minemoto T, Hashimoto Y, Satoh T, Negami T, Takakura H, Hamakawa Y 2001 J. Appl. Phys. 89 8327Google Scholar
[32] Minemoto T, Hashimoto Y, Satoh T, et al. 2003 Sol. Energ. Mater. Sol. Cells 75 121Google Scholar
[33] Torndahl T, Platzer-Bjorkman C, Kessler J, Edoff M 2007 Prog. Photovolt 15 225Google Scholar
[34] Minemoto T, Matsui T, Takakura H, et al. 2001 Sol. Energ. Mater. Sol. Cells 67 83Google Scholar
[35] Ryu S, Noh J H, Jeon N J, Chan Kim Y, Yang W S, Seo J, Seok S I 2014 Energy Environ. Sci. 7 2614Google Scholar
[36] Tanaka K, Minemoto T, Takakura H 2009 Sol. Energy 83 477Google Scholar
[37] Karimi E, Ghorashi S M B 2017 J. Nanophotonics 11 032510Google Scholar
[38] 蒙镜蓉, 李国龙, 索鑫磊, 张立来, 苏杭, 李婉, 王浩 2019 激光与光电子学进展 56 261
Meng J R, Li G L, Suo X L, Zhang L L, Su H, Li W, Wang H 2019 L. & O. Progress 56 261
[39] Gao F Q, Li C H, Qin L, Zhu L J, Huang X, Liu H, Liang L, Hou Y B, Lou Z D, Hu Y F, Teng F 2018 RSC Adv. 8 14025Google Scholar
[40] Adhikari K R, Gurung S, Bhattarai B K, Soucase B M 2016 Phys. Status Solidi C 13 13Google Scholar
[41] 林灵燕, 范宝殿 2017 泉州师范学院学报 36 50
Lin L Y, Fan B D 2017 J. Quanzhou Normal Univ. 36 50
[42] Devi N, Parrey K A, Aziz A, Datta S 2018 J. Vac. Sci. Technol. B 36 105Google Scholar
[43] 孙亚平, 陈慧颖, 陈高玲, 王多发, 章天金 2018 湖北大学学报 40 518
Sun Y P, Chen H Y, Chen G L, Wang D F, Zhang T J 2018 J. Hubei Univ. 40 518
[44] 李毅, 朱俊, 张旭辉, 戴松元 2019 太阳能学报 40 2630
Li Y, Zhu J, Zhang X H, Dai S Y 2019 Acta Energ. Sol. Sin. 40 2630
[45] Hao F, Stoumpos C C, Cao D H, Chang R P, Kanatzidis M G 2014 Nat. Photonics 8 489Google Scholar
[46] Noel N K, Stranks S D, Abate A, et al. 2014 Energy Environ. Sci. 7 3061Google Scholar
[47] Hossain M I, Alharbi F H, Tabet N 2015 Sol. Energy 120 370Google Scholar
-
表 1 基本仿真参数
Table 1. Basic simulation parameters.
Parameter SnO2:F TiO2 MASnI3 spiro-OMeTAD Thickness/nm 500 [13] 100 [21] 500 [13] 200 [18] Eg/eV 3.5 [13] 3.2 [18] 1.3 [13] 3.0 [20] χ/eV 4.0 [13] 3.9 [18] 4.17 [13] 2.45 [20] εr 9.0 [13] 9.0 [18] 8.2 [13] 3.0 [20] Nc/cm–3 1 × 1019 [13] 1 × 1021 [18] 1 × 1018 [13] 1 × 1019 [21] Nv/cm–3 1 × 1019 [13] 2 × 1020 [18] 1 × 1018 [13] 1 × 1019 [21] μn/(cm2·V·s–1) 100 [13] 20 [18] 1.6 [13] 0.0002 [20] μp/(cm2·V·s–1) 25 [13] 10 [18] 1.6 [13] 0.0002 [20] Nd/cm–3 2 × 1019 [13] 1 × 1017 [18] 0 [13] 0 [20] Na/cm–3 0 [13] 0 [18] 1 × 1016 [13] 2 × 1018 [20] Nt/cm–3 1 × 1015 [18] 1 × 1015 [18] 1 × 1015 [13] 1 × 1015 [20] 表 2 不同ETL材料的参数
Table 2. Input parameters of the proposed ETL materials.
Parameter C60 CdS Cd0.5Zn0.5S IGZO PCBM ZnO Eg/eV 1.7 [17] 2.4 [25] 2.8 [13] 3.05 [18] 2 [18] 3.3 [17] χ/eV 3.9 [17] 4.2 [25] 3.8 [13] 4.16 [18] 3.9 [18] 4.1 [17] εr 4.2 [17] 10 [25] 10 [13] 10 [18] 3.9 [18] 9 [17] Nc/cm–3 8 × 1019 [17] 2.2 × 1018 [25] 1 × 1018 [13] 5 × 1018 [18] 2.5 × 1021 [18] 4 × 1018 [17] Nv/cm–3 8 × 1019 [17] 1.8 × 1019 [25] 1 × 1018 [13] 5 × 1018 [18] 2.5 × 1021 [18] 1 × 1019 [17] μn/(cm2·V·s–1) 0.08 [17] 100 [25] 100 [13] 15 [18] 0.2 [18] 100 [17] μp/(cm2·V·s–1) 0.0035 [17] 25 [25] 25 [13] 0.1 [18] 0.2 [18] 25 [17] Nd/cm–3 2.6 × 1018 [17] 1 × 1017 [25] 1 × 1017 [13] 1 × 1018 [18] 2.93 × 1017 [18] 1 × 1018 [26] Na/cm–3 0 [17] 0 [25] 0 [13] 0 [18] 0 [18] 0 [26] Nt/cm–3 1 × 1014 [17] 1 × 1017 [25] 1 × 1015 [13] 1 × 1015 [18] 1 × 1015 [18] 1 × 1015 [26] 表 3 不同HTL材料的参数
Table 3. Input parameters of the proposed HTL materials.
Parameter Cu2O CuI CuSCN MASnBr3 NiO PEDOT:PSS Eg/eV 2.17 [26] 2.98 [18] 3.4 [18] 2.15 [13] 3.8 [18] 2.2 [18] χ/eV 3.2 [26] 2.1 [18] 1.9 [18] 3.39 [13] 1.46 [18] 2.9 [18] εr 6.6 [20] 6.5 [18] 10 [18] 8.2 [13] 11.7 [20] 3 [18] Nc/cm–3 2.5 × 1020 [20] 2.8 × 1019 [18] 1.7 × 1019 [18] 1 × 1018 [13] 2.5 × 1020 [20] 2.2 × 1015 [18] Nv/cm–3 2.5 × 1020 [20] 1 × 1019 [18] 2.5 × 1021 [18] 1 × 1018 [13] 2.5 × 1020 [20] 1.8 × 1018 [18] μn/(cm2·V·s–1) 80 [20] 0.00017 [18] 0.0001 [18] 1.6 [13] 2.8 [20] 0.02 [18] μp/(cm2·V·s–1) 80 [20] 0.0002 [18] 0.1 [18] 1.6 [13] 2.8 [20] 0.0002 [18] Nd/cm–3 0 [20] 0 [18] 0 [18] 0 [13] 0 [18] 0 [18] Na/cm–3 1 × 1018 [26] 1 × 1018 [18] 1 × 1018 [18] 1 × 1018 [13] 1 × 1018 [18] 3.17 × 1014 [18] Nt/cm–3 1 × 1015 [26] 1 × 1015 [18] 1 × 1014 [18] 1 × 1015 [13] 1 × 1014 [18] 1 × 1015 [18] 表 4 不同ETL材料的PSC输出参数
Table 4. Effects of ETLs on output parameters of the PSCs.
Parameter C60 CdS Cd0.5Zn0.5S IGZO PCBM TiO2 ZnO Voc/V 0.84 0.81 0.93 0.82 0.83 0.84 0.83 Jsc/(mA·cm–2) 21.73 27.50 29.39 29.27 24.86 29.64 29.58 FF/% 69.47 62.62 64.73 63.95 67.53 69.27 67.72 PCE/% 12.66 14.01 17.70 15.32 13.92 17.24 16.64 表 5 CBO、界面势垒结构及
$E_{\rm{a}}^{{\rm{ETL}}}$ 的关系Table 5. Relationship between CBO, barrier shape and
$E_{\rm{a}}^{{\rm{ETL}}}$ .Parameter C60 CdS Cd0.5Zn0.5S IGZO PCBM TiO2 ZnO CBO/eV 0.27 –0.03 0.37 0.01 0.27 0.27 0.07 Barrier shape spike cliff spike spike spike spike spike $E_{\rm{a}}^{{\rm{ETL}}}$/eV 1.3 1.27 1.3 1.3 1.3 1.3 1.3 表 6 不同HTL材料的PSC输出参数
Table 6. Effect of HTL on output parameters of the PSCs.
Parameter Cu2O CuI CuSCN MASnBr3 NiO PEDOT:PSS spiro-OMeTAD Voc/V 0.92 0.85 0.91 0.94 0.90 0.88 0.93 Jsc/(mA·cm–2) 28.71 28.18 28.45 30.35 28.32 28.21 29.39 FF/% 76.49 74.32 75.74 76.65 75.04 73.30 64.73 PCE/% 20.28 17.79 19.71 21.55 19.04 18.15 17.70 表 7 VBO、界面势垒结构及
$E_{\rm{a}}^{{\rm{HTL}}}$ 的关系Table 7. Relationship between VBO, barrier shapeand
$E_{\rm{a}}^{{\rm{HTL}}}$ .Parameter Cu2O CuI CuSCN MASnBr3 NiO PEDOT:PSS spiro-OMeTAD VBO/eV –0.1 –0.27 –0.17 0.07 –0.21 –0.27 –0.02 Barrier shape cliff cliff cliff spike cliff cliff cliff $E_{\rm{a}}^{{\rm{HTL}}}$/eV 1.2 1.03 1.13 1.3 1.09 1.03 1.28 表 8 不同结构的电池研究结果对比
Table 8. Comparison of research results of cells with different structures.
Device structure Category PCE/% Device structure Category PCE/% SnO2/MAPbI3/spiro[38] experiment 14.19 TiO2/MAPbI3/CuSCN[47] simulation 20 TiO2/MAPbI3/spiro[43] experiment 15.9 Cu2O/MAPbI3/TiO2[20] simulation 28 TiO2/MAPbI3/spiro[44] experiment 17.36 ZnO/MAPbI3/Cu2O[26] simulation 20 ZnO/MAPbI3/spiro[40] simulation 22.49 TiO2/MAPbI3/CuI[47] simulation 17.54 ZnO/MAPbI3/P3HT[37] simulation 18.76 CdS/MAPbI3/spiro[42] simulation 23.83 TiO2/MAPbI3/CuGaO2[41] simulation 23.42 TiO2/MAPbI3/spiro[47] simulation 22.35 TiO2/MASnI3/spiro[46] experiment 6.4 PEDOT:PASS/MASnI3/PCBM[39] experiment 6.03 TiO2/MASnI3/spiro[45] experiment 5.73 Structure of this article simulation 21.55 -
[1] Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151Google Scholar
[2] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar
[3] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军 2020 69 057901Google Scholar
Liang X J, Cao Y, Cai H K, Su J, Ni J, Li J, Zhang J J 2020 Acta Phys. Sin. 69 057901Google Scholar
[4] Conings B, Drijkoningen J, Gauquelin N, et al. 2015 Adv. Energy Mater. 5 1500477Google Scholar
[5] Wang R, Mujahid M, Duan Y, Wang Z K, Xue J, Yang Y 2019 Adv. Funct. Mater. 29 1808843Google Scholar
[6] Wang Q, Phung N, Di Girolamo D, Vivo P, Abate A 2019 Energy Environ. Sci. 12 865Google Scholar
[7] Liang J, Liu J, Jin Z 2017 Solar RRL 1 1700086Google Scholar
[8] Yang T C, Fiala P, Jeangros Q, Ballif C 2018 Joule 2 1421Google Scholar
[9] Chen H, Xiang S, Li W, Liu H, Zhu L, Yang S 2018 Solar RRL 2 1700188Google Scholar
[10] Song T, Yokoyama T, Aramaki S, Kanatzidis M G 2017 ACS Energy Letters 2 897Google Scholar
[11] Green MA, Ho-Baillie A, Snaith HJ 2014 Nat. Photonics 8 506Google Scholar
[12] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[13] Baig F, Khattak Y H, Marí B, Beg S, Ahmed A, Khan K 2018 J. Electron. Mater. 47 5275Google Scholar
[14] Chen M, Ju M, Carl A D, Zong Y, Grimm R L, Gu J, Zeng X C, Zhou Y, Padture N P 2018 Joule 2 558Google Scholar
[15] Chakraborty K, Choudhury MG, Paul S 2019 Sol. Energy 194 886Google Scholar
[16] Islam M A, Rahman K S, Misran H, Asim N, Hossain M S, Akhtaruzzaman M, Amin N 2019 Results Phys. 14 102518Google Scholar
[17] Lakhdar N, Hima A 2020 Opt. Mater. 99 109517Google Scholar
[18] Azri F, Meftah A, Sengouga N, Meftah A 2019 Sol. Energy 181 372Google Scholar
[19] Sajid, Elseman A M, Ji J, Dou S, Huang H, Cui P, Wei D, Li M 2018 Chin. Phys. B 27 80Google Scholar
[20] Minemoto T, Murata M 2014 Curr. Appl. Phys. 14 1428Google Scholar
[21] Teimour R, Mohammadpour R 2018 Superlattices Microstruct. 118 116Google Scholar
[22] Du H J, Wang W C, Zhu J Z 2016 Chin. Phys. B 25 108802Google Scholar
[23] Chouhan A S, Jasti N P, Avasthi S 2018 Mater. Lett. 221 150Google Scholar
[24] Huang S, Rui Z, Chi D, Bao D 2019 Journal of Semiconductors 40 19Google Scholar
[25] Lin L Y, Jiang L Q, Qiu Y, Fan B D 2018 J. Phys. Chem. Solids 122 19Google Scholar
[26] Lin L Y, Jiang L Q, Li P, Fan B D, Qiu Y 2019 J. Phys. Chem. Solids 124 205Google Scholar
[27] Wang D, Wu C, Luo W, Guo X, Qu B, Xiao L, Chen Z 2018 ACS Appl. Energy Mater. 1 2215Google Scholar
[28] Minemoto T, Murata M 2015 Sol. Energy Mater. Sol. Cells 133 8Google Scholar
[29] Klenk R 2001 Thin Solid Films 387 135Google Scholar
[30] Gloeckler M, Sites J 2005 Thin Solid Films 480 241Google Scholar
[31] Minemoto T, Hashimoto Y, Satoh T, Negami T, Takakura H, Hamakawa Y 2001 J. Appl. Phys. 89 8327Google Scholar
[32] Minemoto T, Hashimoto Y, Satoh T, et al. 2003 Sol. Energ. Mater. Sol. Cells 75 121Google Scholar
[33] Torndahl T, Platzer-Bjorkman C, Kessler J, Edoff M 2007 Prog. Photovolt 15 225Google Scholar
[34] Minemoto T, Matsui T, Takakura H, et al. 2001 Sol. Energ. Mater. Sol. Cells 67 83Google Scholar
[35] Ryu S, Noh J H, Jeon N J, Chan Kim Y, Yang W S, Seo J, Seok S I 2014 Energy Environ. Sci. 7 2614Google Scholar
[36] Tanaka K, Minemoto T, Takakura H 2009 Sol. Energy 83 477Google Scholar
[37] Karimi E, Ghorashi S M B 2017 J. Nanophotonics 11 032510Google Scholar
[38] 蒙镜蓉, 李国龙, 索鑫磊, 张立来, 苏杭, 李婉, 王浩 2019 激光与光电子学进展 56 261
Meng J R, Li G L, Suo X L, Zhang L L, Su H, Li W, Wang H 2019 L. & O. Progress 56 261
[39] Gao F Q, Li C H, Qin L, Zhu L J, Huang X, Liu H, Liang L, Hou Y B, Lou Z D, Hu Y F, Teng F 2018 RSC Adv. 8 14025Google Scholar
[40] Adhikari K R, Gurung S, Bhattarai B K, Soucase B M 2016 Phys. Status Solidi C 13 13Google Scholar
[41] 林灵燕, 范宝殿 2017 泉州师范学院学报 36 50
Lin L Y, Fan B D 2017 J. Quanzhou Normal Univ. 36 50
[42] Devi N, Parrey K A, Aziz A, Datta S 2018 J. Vac. Sci. Technol. B 36 105Google Scholar
[43] 孙亚平, 陈慧颖, 陈高玲, 王多发, 章天金 2018 湖北大学学报 40 518
Sun Y P, Chen H Y, Chen G L, Wang D F, Zhang T J 2018 J. Hubei Univ. 40 518
[44] 李毅, 朱俊, 张旭辉, 戴松元 2019 太阳能学报 40 2630
Li Y, Zhu J, Zhang X H, Dai S Y 2019 Acta Energ. Sol. Sin. 40 2630
[45] Hao F, Stoumpos C C, Cao D H, Chang R P, Kanatzidis M G 2014 Nat. Photonics 8 489Google Scholar
[46] Noel N K, Stranks S D, Abate A, et al. 2014 Energy Environ. Sci. 7 3061Google Scholar
[47] Hossain M I, Alharbi F H, Tabet N 2015 Sol. Energy 120 370Google Scholar
计量
- 文章访问数: 10749
- PDF下载量: 271
- 被引次数: 0