Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress of research on new hole transporting materials used in perovskite solar cells

Song Zhi-Hao Wang Shi-Rong Xiao Yin Li Xiang-Gao

Citation:

Progress of research on new hole transporting materials used in perovskite solar cells

Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Perovskite solar cells with a solid-state thin film structure have attracted great attention in recent years due to their simple structure, low production cost and superb photovoltaic performance. Because of the boost in power conversion efficiency (PCE) in short intervals from 3.8% to 19.3% at present, this hybrid cells have been considered as the next generation photovoltaic devices. It is expected that the efficiencies of individual devices could ultimately achieve 25%, which is comparable to the single-crystal silicon solar cell.In this article, the perovskite absorber, its basic device structure, and operating principles are briefly introduced. Since most of the high efficiency perovskite solar cells employ hole transporting materials (HTM), they could benefit the hole transport and improve the metal-semiconductor interface in the cells. This perspective gives analyses of some effective hole transporting materials for perovskite solar cell application. The hole transporting materials used in perovskite solar cell are classified into six categories according to their structures, including triphenylamine-based small molecule HTM, small molecule HTM containing N atom, sulfur-based small molecule HTM, sulfur-based polymer HTM, polymer HTM containing N atom and inorganic HTM. Emphasis is placed on the interplay of molecular structures, energy levels, and charge carrier mobility as well as device parameters. A critial look at various approaches applied to achieve desired materials and device performance is provided to assist in the identification of new directions and further advances.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA030307), and the Key Projects in the Science & Technology Pillar Program of Tianjin, China (Grant No. 13ZCZDGX00900).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [3]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [4]

    Singh S P, Nagarjuna P 2014 Dalton Trans. 43 5247

    [5]

    Cai B, Xing Y D, Yang Z, Zhang W H, Qiu J S 2013 Energy Environ. Sci. 6 1480

    [6]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764

    [7]

    Park N G 2013 J. Phys. Chem. Lett. 4 2423

    [8]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kukihara K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984

    [9]

    Yang Z, Zhang W H 2014 Chin. J. Catal. 35 983

    [10]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [11]

    Shi J J, Dong J, Lv S T, Xu Y Z, Zhu L F, Xiao J Y, Xu X, Wu H J, Li D M, Luo Y H, Meng Q B 2014 Appl. Phys. Lett. 104 063901

    [12]

    Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [13]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [14]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [15]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [16]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [17]

    Sun S Y, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G C, Sum T C, Lam Y M 2014 Energy Environ. Sci. 7 399

    [18]

    Kim H B, Choi H, Jeong J, Kim S, Walker B, Song S, Kim J Y 2014 Nanoscale 6 6679

    [19]

    Wang B H, Xiao X D, Chen T 2014 Nanoscale 6 12287

    [20]

    Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Graätzel M 2012 J. Am. Chem. Soc. 134 17396

    [21]

    Xu Y Z, Shi J J, Lv S T, Zhu L F, Dong J, Wu H J, Xiao Y, Luo Y H, Wang S R, Li D M, Li X G, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 5651

    [22]

    Kazim S, Nazeeruddin M K, Grätzel M, Ahmad S 2014 Angew. Chem. Int. Ed. 53 2812

    [23]

    Polander L E, Pahner P, Schwarze M, Saalfrank M, Koerner C, Leo K 2014 APL Materials 2 081503

    [24]

    Leijtens T, Lim J, Teuscher J, Park T, Snaith H J 2013 Adv. Mater. 25 3227

    [25]

    Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N, Yi C Y, Nazeeruddin M K, Grätzel M 2011 J. Am. Chem. Soc. 133 18042

    [26]

    Krger J, Plass R, Cevey L, Piccirelli M, Grätzel M, Bach U 2001 Appl. Phys. Lett. 79 2085

    [27]

    Kwon Y S, Lim J, Yun H J, Kim Y H, Park T 2014 Energy Environ. Sci. 7 1454

    [28]

    Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [29]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [30]

    Jeon N J, Lee H G, Kim Y C, Seo J, Noh J H, Lee J, Seok S I 2014 J. Am. Chem. Soc. 136 7837

    [31]

    Christians J A, Fung R C, Kamat P V 2013 J. Am. Chem. Soc. 136 758

    [32]

    Wang J J, Wang S R, Li X G, Zhu L F, Meng Q B, Xiao Y, Li D M 2014 Chem. Commun. 50 5829

    [33]

    Lv S T, Han L Y, Xiao J Y, Zhu L F, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Li D M, Wang S R, Luo Y H, Meng Q B, Li X G 2014 Chem. Commun. 50 6931

    [34]

    Krishnamoorthy T, Kunwu F, Boix P P, Li H, Koh T M, Leong W L, Powar S, Grimsdale A, Grätzel M, Mathews N, Mhaisalkar S G 2014 J. Mater. Chem. A 2 6305

    [35]

    Li H R, Fu K, Hagfeldt A, Grätzel M, Mhaisalkar S G, Grimsdale A C 2014 Angew. Chem. Int. Ed. 53 4085

    [36]

    Krishna A, Sabba D, Li H R, Yin J, Boix P P, Soci C, Mhaisalkar S G, Grimsdale A C 2014 Chem. Sci. 5 2702

    [37]

    Do K, Choi H, Lim K, Jo H, Cho J W, Nazeeruddin M K, Ko J 2014 Chem. Commun. 50 10971

    [38]

    Choi H, Paek S, Lim N, Lee Y, Nazeeruddin M K, Ko J 2014 Chem. Eur. J. 20 10894

    [39]

    Xiao J Y, Han L Y, Zhu L F, Lv S T, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Xiao Y, Li D M, Wang S R, Luo Y H, Li X G, Meng Q B 2014 RSC Adv. 4 32918

    [40]

    Bi D Q, Yang L, Boschloo G, Hagfeldt A, Johansson E M 2013 J. Phys. Chem. Lett. 4 1532

    [41]

    Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Graätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087

    [42]

    Li W Z, Dong H P, Wang L D, Li N, Guo X D, Li J W, Qiu Y 2014 J. Mater. Chem. A 2 13587

    [43]

    Liu J, Wu Y Z, Qin C J, Yang X D, Yasuda T, Islam A, Zhang K, Peng W Q, Chen W, Han L Y 2014 Energy Environ. Sci. 7 2963

    [44]

    Zheng L L, Chung Y H, Ma Y Z, Zhang L P, Xiao L X, Chen Z J, Wang S F, Qu B, Gong Q H 2014 Chem. Commun. 50 11196

    [45]

    Zhou J Y, Wan X J, Liu Y S, Zuo Y, Li Z, He G R, Long G K, Ni W, Li C X, Su X C, Chen Y S 2012 J. Am. Chem. Soc. 134 16345

    [46]

    Qin P, Paek S, Dar M I, Pellet N, Ko J, Grätzel M, Nazeeruddin M K 2014 J. Am. Chem. Soc. 136 8516

    [47]

    Chen H W, Pan X, Liu W Q, Cai M, Kou D X, Huo Z P, Fang X Q, Dai S Y 2013 Chem. Commun. 49 7277

    [48]

    Guo Y L, Liu C, Inoue K, Harano K, Tanaka H, Nakamura E 2014 J. Mater. Chem. A 2 13827

    [49]

    Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J 2014 Nano Lett. 14 5561

    [50]

    Lee J W, Park S, Ko M J, Son H J, Park N G 2014 ChemPhysChem 15 2595

    [51]

    You J B, Hong Z R, Yang Y M, Chen Q, Cai M, Song T B, Chen C C, Lu S R, Liu Y S, Zhou H P, Yang Y 2014 ACS Nano 8 1674

    [52]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642

    [53]

    Chiang C H, Tseng Z L, Wu C G 2014 J. Mater. Chem. A 2 15897

    [54]

    Yan W B, Li Y L, Sun W H, Peng H T, Ye S Y, Liu Z W, Bian Z Q, Huang C H 2014 RSC Adv. 4 33039

    [55]

    Xiao Y M, Han G Y, Chang Y Z, Zhou H H, Li M Y, Li Y P 2014 J. Power Sources 267 1

    [56]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I 2013 Nat. Photonics 7 486

    [57]

    Ryu S, Noh J H, Jeon N J, Kim Y C, Yang W S, Seo J W, Seok S I 2014 Energy Environ. Sci. 7 2614

    [58]

    Ito S, Tanaka S, Vahlman H, Nishino H, Manabe K, Lund P 2014 ChemPhysChem 15 1194

    [59]

    Ito S, Tanaka S, Manabe K, Nishino H 2014 J. Phys. Chem. C 118 16995

    [60]

    Chavhan S D, Miguel O, Grande H J, Gonzalez-Pedro V, Sánchez R S, Barea E M, Mora-Seró I, Ramon T Z 2014 J. Mater. Chem. A 2 12754

    [61]

    Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin M K, Grätzel M 2014 Nat. Commun. 5 3834

    [62]

    Subbiah A S, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar S K 2014 J. Phys. Chem. Lett. 5 1748

    [63]

    Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107

    [64]

    Zhu Z L, Bai Y, Zhang T, Liu Z K, Long X, Wei Z H, Wang Z L, Zhang L X, Wang J N, Yan F, Yang S H 2014 Angew. Chem. Int. Ed. 53 12571

    [65]

    Wang K C, Jeng J Y, Shen P S, Chang Y C, Diau E W G, Tsai C H, Chao T Y, Hsu H C, Lin P Y, Chen P, Guo T F, Wen T C 2014 Sci. Rep. 4 4756

    [66]

    Wu Z W, Bai S, Xiang J, Yuan Z C, Yang Y G, Cui W, Gao X Y, Liu Z, Jin Y Z, Sun B Q 2014 Nanoscale 6 10505

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [3]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [4]

    Singh S P, Nagarjuna P 2014 Dalton Trans. 43 5247

    [5]

    Cai B, Xing Y D, Yang Z, Zhang W H, Qiu J S 2013 Energy Environ. Sci. 6 1480

    [6]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764

    [7]

    Park N G 2013 J. Phys. Chem. Lett. 4 2423

    [8]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kukihara K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984

    [9]

    Yang Z, Zhang W H 2014 Chin. J. Catal. 35 983

    [10]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [11]

    Shi J J, Dong J, Lv S T, Xu Y Z, Zhu L F, Xiao J Y, Xu X, Wu H J, Li D M, Luo Y H, Meng Q B 2014 Appl. Phys. Lett. 104 063901

    [12]

    Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [13]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [14]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [15]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [16]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [17]

    Sun S Y, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G C, Sum T C, Lam Y M 2014 Energy Environ. Sci. 7 399

    [18]

    Kim H B, Choi H, Jeong J, Kim S, Walker B, Song S, Kim J Y 2014 Nanoscale 6 6679

    [19]

    Wang B H, Xiao X D, Chen T 2014 Nanoscale 6 12287

    [20]

    Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Graätzel M 2012 J. Am. Chem. Soc. 134 17396

    [21]

    Xu Y Z, Shi J J, Lv S T, Zhu L F, Dong J, Wu H J, Xiao Y, Luo Y H, Wang S R, Li D M, Li X G, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 5651

    [22]

    Kazim S, Nazeeruddin M K, Grätzel M, Ahmad S 2014 Angew. Chem. Int. Ed. 53 2812

    [23]

    Polander L E, Pahner P, Schwarze M, Saalfrank M, Koerner C, Leo K 2014 APL Materials 2 081503

    [24]

    Leijtens T, Lim J, Teuscher J, Park T, Snaith H J 2013 Adv. Mater. 25 3227

    [25]

    Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N, Yi C Y, Nazeeruddin M K, Grätzel M 2011 J. Am. Chem. Soc. 133 18042

    [26]

    Krger J, Plass R, Cevey L, Piccirelli M, Grätzel M, Bach U 2001 Appl. Phys. Lett. 79 2085

    [27]

    Kwon Y S, Lim J, Yun H J, Kim Y H, Park T 2014 Energy Environ. Sci. 7 1454

    [28]

    Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [29]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [30]

    Jeon N J, Lee H G, Kim Y C, Seo J, Noh J H, Lee J, Seok S I 2014 J. Am. Chem. Soc. 136 7837

    [31]

    Christians J A, Fung R C, Kamat P V 2013 J. Am. Chem. Soc. 136 758

    [32]

    Wang J J, Wang S R, Li X G, Zhu L F, Meng Q B, Xiao Y, Li D M 2014 Chem. Commun. 50 5829

    [33]

    Lv S T, Han L Y, Xiao J Y, Zhu L F, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Li D M, Wang S R, Luo Y H, Meng Q B, Li X G 2014 Chem. Commun. 50 6931

    [34]

    Krishnamoorthy T, Kunwu F, Boix P P, Li H, Koh T M, Leong W L, Powar S, Grimsdale A, Grätzel M, Mathews N, Mhaisalkar S G 2014 J. Mater. Chem. A 2 6305

    [35]

    Li H R, Fu K, Hagfeldt A, Grätzel M, Mhaisalkar S G, Grimsdale A C 2014 Angew. Chem. Int. Ed. 53 4085

    [36]

    Krishna A, Sabba D, Li H R, Yin J, Boix P P, Soci C, Mhaisalkar S G, Grimsdale A C 2014 Chem. Sci. 5 2702

    [37]

    Do K, Choi H, Lim K, Jo H, Cho J W, Nazeeruddin M K, Ko J 2014 Chem. Commun. 50 10971

    [38]

    Choi H, Paek S, Lim N, Lee Y, Nazeeruddin M K, Ko J 2014 Chem. Eur. J. 20 10894

    [39]

    Xiao J Y, Han L Y, Zhu L F, Lv S T, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Xiao Y, Li D M, Wang S R, Luo Y H, Li X G, Meng Q B 2014 RSC Adv. 4 32918

    [40]

    Bi D Q, Yang L, Boschloo G, Hagfeldt A, Johansson E M 2013 J. Phys. Chem. Lett. 4 1532

    [41]

    Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Graätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087

    [42]

    Li W Z, Dong H P, Wang L D, Li N, Guo X D, Li J W, Qiu Y 2014 J. Mater. Chem. A 2 13587

    [43]

    Liu J, Wu Y Z, Qin C J, Yang X D, Yasuda T, Islam A, Zhang K, Peng W Q, Chen W, Han L Y 2014 Energy Environ. Sci. 7 2963

    [44]

    Zheng L L, Chung Y H, Ma Y Z, Zhang L P, Xiao L X, Chen Z J, Wang S F, Qu B, Gong Q H 2014 Chem. Commun. 50 11196

    [45]

    Zhou J Y, Wan X J, Liu Y S, Zuo Y, Li Z, He G R, Long G K, Ni W, Li C X, Su X C, Chen Y S 2012 J. Am. Chem. Soc. 134 16345

    [46]

    Qin P, Paek S, Dar M I, Pellet N, Ko J, Grätzel M, Nazeeruddin M K 2014 J. Am. Chem. Soc. 136 8516

    [47]

    Chen H W, Pan X, Liu W Q, Cai M, Kou D X, Huo Z P, Fang X Q, Dai S Y 2013 Chem. Commun. 49 7277

    [48]

    Guo Y L, Liu C, Inoue K, Harano K, Tanaka H, Nakamura E 2014 J. Mater. Chem. A 2 13827

    [49]

    Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J 2014 Nano Lett. 14 5561

    [50]

    Lee J W, Park S, Ko M J, Son H J, Park N G 2014 ChemPhysChem 15 2595

    [51]

    You J B, Hong Z R, Yang Y M, Chen Q, Cai M, Song T B, Chen C C, Lu S R, Liu Y S, Zhou H P, Yang Y 2014 ACS Nano 8 1674

    [52]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642

    [53]

    Chiang C H, Tseng Z L, Wu C G 2014 J. Mater. Chem. A 2 15897

    [54]

    Yan W B, Li Y L, Sun W H, Peng H T, Ye S Y, Liu Z W, Bian Z Q, Huang C H 2014 RSC Adv. 4 33039

    [55]

    Xiao Y M, Han G Y, Chang Y Z, Zhou H H, Li M Y, Li Y P 2014 J. Power Sources 267 1

    [56]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I 2013 Nat. Photonics 7 486

    [57]

    Ryu S, Noh J H, Jeon N J, Kim Y C, Yang W S, Seo J W, Seok S I 2014 Energy Environ. Sci. 7 2614

    [58]

    Ito S, Tanaka S, Vahlman H, Nishino H, Manabe K, Lund P 2014 ChemPhysChem 15 1194

    [59]

    Ito S, Tanaka S, Manabe K, Nishino H 2014 J. Phys. Chem. C 118 16995

    [60]

    Chavhan S D, Miguel O, Grande H J, Gonzalez-Pedro V, Sánchez R S, Barea E M, Mora-Seró I, Ramon T Z 2014 J. Mater. Chem. A 2 12754

    [61]

    Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin M K, Grätzel M 2014 Nat. Commun. 5 3834

    [62]

    Subbiah A S, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar S K 2014 J. Phys. Chem. Lett. 5 1748

    [63]

    Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107

    [64]

    Zhu Z L, Bai Y, Zhang T, Liu Z K, Long X, Wei Z H, Wang Z L, Zhang L X, Wang J N, Yan F, Yang S H 2014 Angew. Chem. Int. Ed. 53 12571

    [65]

    Wang K C, Jeng J Y, Shen P S, Chang Y C, Diau E W G, Tsai C H, Chao T Y, Hsu H C, Lin P Y, Chen P, Guo T F, Wen T C 2014 Sci. Rep. 4 4756

    [66]

    Wu Z W, Bai S, Xiang J, Yuan Z C, Yang Y G, Cui W, Gao X Y, Liu Z, Jin Y Z, Sun B Q 2014 Nanoscale 6 10505

  • [1] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [4] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [5] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [6] Sun Meng-Jie, He Zhi-Qun, Zheng Yi-Fan, Shao Yu-Chuan. Application of EDTA/SnO2 double-layer composite electron transport layer to perovskite solar cells. Acta Physica Sinica, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [7] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [8] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [10] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [11] Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le. Influence of back electrode material, structure and thickness on performance of perovskite solar cells. Acta Physica Sinica, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [12] Cui Zong-Yang, Xie Zhong-Shuai, Wang Yao-Jin, Yuan Guo-Liang, Liu Jun-Ming. Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors. Acta Physica Sinica, 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [13] Zhang Chen, Zhang Hai-Yu, Hao Hui-Ying, Dong Jing-Jing, Xing Jie, Liu Hao, Shi Lei, Zhong Ting-Ting, Tang Kun-Peng, Xu Xiang. Morphology control of zinc oxide nanorods and its application as an electron transport layer in perovskite solar cells. Acta Physica Sinica, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [14] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [15] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [16] Liu Yi, Xu Zheng, Zhao Su-Ling, Qiao Bo, Li Yang, Qin Zi-Lun, Zhu You-Qin. Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance. Acta Physica Sinica, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [17] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] Huang Lin-Quan, Zhou Ling-Yu, Yu Wei, Yang Dong, Zhang Jian, Li Can. Recent progress in graphene and its derivatives as interfacial layers in organic solar cells. Acta Physica Sinica, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [19] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] Hao Zhi-Hong, Hu Zi-Yang, Zhang Jian-Jun, Hao Qiu-Yan, Zhao Ying. Influence of doped PEDOT ∶PSS on performance of polymer solar cells. Acta Physica Sinica, 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
Metrics
  • Abstract views:  13608
  • PDF Downloads:  4502
  • Cited By: 0
Publishing process
  • Received Date:  20 October 2014
  • Accepted Date:  27 November 2014
  • Published Online:  05 February 2015

/

返回文章
返回
Baidu
map