Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress of terahertz devices based on graphene

Feng Wei Zhang Rong Cao Jun-Cheng

Citation:

Progress of terahertz devices based on graphene

Feng Wei, Zhang Rong, Cao Jun-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene has unique electronic properties stemming from a linear gapless carrier energy spectrum, and has dominant advantages in the research of devices such as lasers, detectors and modulators in terahertz region due to its tunable energy gap and extremely high carrier mobility. In this review, we summarize its latest progress in applications of terahertz devices such as lasers, detectors and modulators. Terahertz lasers based on graphene can reach a gain as high as 104 cm-1, and terahertz detectors with different structures such as a bilayer graphene field-effect transistor with top gate and buried gate can achieve NEP (noise equivalent power) ~ m nW/Hz. Graphene terahertz modulators, which are equipped with transmission configuration and reflection configuration, can have a very high modulation depth. These results may be helpful for developing the high-efficiency graphene terahertz devices.
      Corresponding author: Cao Jun-Cheng, jccao@mail.sim.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB339803), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, 61306066), the National Key Scientific Instrument and Equipment Development Project, China (Grant No. 2011YQ150021), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02707), the Major Project of the Chinese Academy of Sciences (Grant No. YYYJ-1123-1), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology, China (Grant Nos. 14530711300,13ZR1464600).
    [1]

    Ferguson B, Zhang X C 2003 Physics 32 286 (in Chinese) [Ferguson B, 张希成 2003 物理 32 286]

    [2]

    Cao J C 2003 J. Funct. Mater. Dev. 9 111 (in Chinese) [曹俊诚 2003 功能材料与器件学报 9 111]

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [5]

    Li S J, Gan S, Mu H R, Xu Q Y, Qiao H, Li P F, Xue Y Z, Bao Q L 2014 New Carbon Mater. 29 329 (in Chinese) [李绍娟, 甘胜, 沐浩然, 徐庆阳, 乔虹, 李鹏飞, 薛运周, 鲍桥梁 2014 新型炭材料 29 329]

    [6]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [7]

    Cao J C 2012 Semiconductor Terahertz Sources, Detectors and Applications (1st Ed.) (Beijing: Science Press) p1 (in Chinese) [曹俊诚 2012 半导体太赫兹源、探测器与应用(第一版)(北京: 科学出版社) 第1页]

    [8]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D 2009 Adv. Funct. Mater. 19 3077

    [9]

    Ryzhii V, Ryzhii M, Otsuji T 2007 J. Appl. Phys. 101 083114

    [10]

    Satou A, Vasko F T, Ryzhii V 2008 Phys. Rev. B 78 115431

    [11]

    Ryzhii V, Ryzhii M, Satou A 2009 J. Appl. Phys. 106 084507

    [12]

    Ryzhii V, Ryzhii M, Otsuji T 2008 Phys. Stat. Sol. 5 261

    [13]

    Karasawa H, Komori T, Watanabe T, Satou A, Fukidome H, Suemitsu M, Ryzhii V, Otsuji T 2011 J. Infrared Millim. Terahertz Waves 32 655

    [14]

    Ryzhi V, Ryzhi M, Otsuji T 2011 Appl. Phys. Lett. 99 173504

    [15]

    Ryzhi V, Ryzhi M, Mitin V, Satou A, Otsuji T 2011 Jpn. J. Appl. Phys. 50 094001

    [16]

    Boubanga-Tombet S, Chan S, Watanabe T, Satou A, Ryzhii V, Otsuji T 2012 Phys. Rev. B 85 035443

    [17]

    Watanabe T, Fukushima T, Yabe Y, Boubanga Tombet S A, Satou A, Dubinov A A, Aleshkin V Ya, Mitin V, Ryzhii V, Otsuji T 2013 New J. Phys. 15 075003

    [18]

    Ryzhii V, Dubinov A A, Aleshkin V Ya, Ryzhi M, Otsuji T 2013 Appl. Phys. Lett. 103 163507

    [19]

    Popov V V, Polischuk O V, Davoyan A R, Ryzhii V, Ostuji T, Shur M S 2012 Phys. Rev. B 86 195437

    [20]

    Ryzhii V, Mitin V, Ryzhii M, Ryabova N, Otsuji T 2008 Appl. Phys. Express 1 063002

    [21]

    Ryzhii V, Ryzhii M, Ryabova N, Mitin V, Otsuji T 2009 Jpn. J. Appl. Phys. 48 04C144

    [22]

    Wright A R, Cao J C, Zhang C 2009 Phys. Rev. Lett. 103 207401

    [23]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839

    [24]

    Ryzhii M, Otsuji T, Mitin V, Ryzhii V 2011 Jpn. J. Appl. Phys. 50 070117

    [25]

    Chen J, Badioli M, Alonso-Gonzlez P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Garca de Abajo F J, Hillenbrand R, Koppens F H 2012 Nature 487 77

    [26]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [27]

    Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V, Tredicucci A 2012 Nature Mater. 11 865

    [28]

    Mittendorff M, Winnerl S, Kamann J, Eroms J, Weiss D, Schneider H, Helm M 2013 Appl. Phys. Lett. 103 021113

    [29]

    Muraviev A V, Rumyantsev S L, Liu G, Balandin A A, Knap W, Shur M S 2013 Appl. Phys. Lett. 103 181114

    [30]

    Zak A, Andersson M A, Bauer M, Matukas J, Lisauskas A, Roskos H G, Stake J 2014 Nano Lett. 14 5834

    [31]

    Spirito D, Coquillat D, Bonis S L, Lombardo A, Bruna M, Ferrari A C, Pellegrini V, Tredicucci A, Knap W, Vitiello M S 2014 Appl. Phys. Lett. 104 061111

    [32]

    Dawlaty J M, Shivaraman S, Strait J, George P, Chandrashekhar M, Rana F, Spencer M G, Veksler D, Chen Y 2008 Appl. Phys. Lett. 93 131905

    [33]

    Choi H, Borondics F, Siegel D A, Zhou S Y, Martin M C, Lanzara A, Kaindl R A 2009 Appl. Phys. Lett. 94 172102

    [34]

    Liu M, Yin X, UlinAvila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [35]

    Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nat. Commun. 3 780

    [36]

    Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L, Xing H G 2012 Nano Lett. 12 4518

    [37]

    Sensale-Rodriguez B, Yan R, Zhu M, Jena D, Liu L, Xing H G 2012 Appl. Phys. Lett. 101 261115

    [38]

    Weis P, Garcia-Pomar J L, Hh M, Reinhard B, Brodyanski A, Rahm M 2012 ACS Nano 6 9118

    [39]

    Wen Q Y, Tian W, Mao Q, Chen Z, Liu W W, Yang Q H, Sanderson M, Zhang H W 2014 Sci. Rep. 4 7409

  • [1]

    Ferguson B, Zhang X C 2003 Physics 32 286 (in Chinese) [Ferguson B, 张希成 2003 物理 32 286]

    [2]

    Cao J C 2003 J. Funct. Mater. Dev. 9 111 (in Chinese) [曹俊诚 2003 功能材料与器件学报 9 111]

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [5]

    Li S J, Gan S, Mu H R, Xu Q Y, Qiao H, Li P F, Xue Y Z, Bao Q L 2014 New Carbon Mater. 29 329 (in Chinese) [李绍娟, 甘胜, 沐浩然, 徐庆阳, 乔虹, 李鹏飞, 薛运周, 鲍桥梁 2014 新型炭材料 29 329]

    [6]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [7]

    Cao J C 2012 Semiconductor Terahertz Sources, Detectors and Applications (1st Ed.) (Beijing: Science Press) p1 (in Chinese) [曹俊诚 2012 半导体太赫兹源、探测器与应用(第一版)(北京: 科学出版社) 第1页]

    [8]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D 2009 Adv. Funct. Mater. 19 3077

    [9]

    Ryzhii V, Ryzhii M, Otsuji T 2007 J. Appl. Phys. 101 083114

    [10]

    Satou A, Vasko F T, Ryzhii V 2008 Phys. Rev. B 78 115431

    [11]

    Ryzhii V, Ryzhii M, Satou A 2009 J. Appl. Phys. 106 084507

    [12]

    Ryzhii V, Ryzhii M, Otsuji T 2008 Phys. Stat. Sol. 5 261

    [13]

    Karasawa H, Komori T, Watanabe T, Satou A, Fukidome H, Suemitsu M, Ryzhii V, Otsuji T 2011 J. Infrared Millim. Terahertz Waves 32 655

    [14]

    Ryzhi V, Ryzhi M, Otsuji T 2011 Appl. Phys. Lett. 99 173504

    [15]

    Ryzhi V, Ryzhi M, Mitin V, Satou A, Otsuji T 2011 Jpn. J. Appl. Phys. 50 094001

    [16]

    Boubanga-Tombet S, Chan S, Watanabe T, Satou A, Ryzhii V, Otsuji T 2012 Phys. Rev. B 85 035443

    [17]

    Watanabe T, Fukushima T, Yabe Y, Boubanga Tombet S A, Satou A, Dubinov A A, Aleshkin V Ya, Mitin V, Ryzhii V, Otsuji T 2013 New J. Phys. 15 075003

    [18]

    Ryzhii V, Dubinov A A, Aleshkin V Ya, Ryzhi M, Otsuji T 2013 Appl. Phys. Lett. 103 163507

    [19]

    Popov V V, Polischuk O V, Davoyan A R, Ryzhii V, Ostuji T, Shur M S 2012 Phys. Rev. B 86 195437

    [20]

    Ryzhii V, Mitin V, Ryzhii M, Ryabova N, Otsuji T 2008 Appl. Phys. Express 1 063002

    [21]

    Ryzhii V, Ryzhii M, Ryabova N, Mitin V, Otsuji T 2009 Jpn. J. Appl. Phys. 48 04C144

    [22]

    Wright A R, Cao J C, Zhang C 2009 Phys. Rev. Lett. 103 207401

    [23]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839

    [24]

    Ryzhii M, Otsuji T, Mitin V, Ryzhii V 2011 Jpn. J. Appl. Phys. 50 070117

    [25]

    Chen J, Badioli M, Alonso-Gonzlez P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Garca de Abajo F J, Hillenbrand R, Koppens F H 2012 Nature 487 77

    [26]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [27]

    Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V, Tredicucci A 2012 Nature Mater. 11 865

    [28]

    Mittendorff M, Winnerl S, Kamann J, Eroms J, Weiss D, Schneider H, Helm M 2013 Appl. Phys. Lett. 103 021113

    [29]

    Muraviev A V, Rumyantsev S L, Liu G, Balandin A A, Knap W, Shur M S 2013 Appl. Phys. Lett. 103 181114

    [30]

    Zak A, Andersson M A, Bauer M, Matukas J, Lisauskas A, Roskos H G, Stake J 2014 Nano Lett. 14 5834

    [31]

    Spirito D, Coquillat D, Bonis S L, Lombardo A, Bruna M, Ferrari A C, Pellegrini V, Tredicucci A, Knap W, Vitiello M S 2014 Appl. Phys. Lett. 104 061111

    [32]

    Dawlaty J M, Shivaraman S, Strait J, George P, Chandrashekhar M, Rana F, Spencer M G, Veksler D, Chen Y 2008 Appl. Phys. Lett. 93 131905

    [33]

    Choi H, Borondics F, Siegel D A, Zhou S Y, Martin M C, Lanzara A, Kaindl R A 2009 Appl. Phys. Lett. 94 172102

    [34]

    Liu M, Yin X, UlinAvila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [35]

    Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nat. Commun. 3 780

    [36]

    Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L, Xing H G 2012 Nano Lett. 12 4518

    [37]

    Sensale-Rodriguez B, Yan R, Zhu M, Jena D, Liu L, Xing H G 2012 Appl. Phys. Lett. 101 261115

    [38]

    Weis P, Garcia-Pomar J L, Hh M, Reinhard B, Brodyanski A, Rahm M 2012 ACS Nano 6 9118

    [39]

    Wen Q Y, Tian W, Mao Q, Chen Z, Liu W W, Yang Q H, Sanderson M, Zhang H W 2014 Sci. Rep. 4 7409

  • [1] Yao Hai-Yun, Yan Xin, Liang Lan-Ju, Yang Mao-Sheng, Yang Qi-Li, Lü Kai-Kai, Yao Jian-Quan. Terahertz dynamic multidimensional modulation at Dirac point based on patterned graphene/gallium nitride hybridized with metasurfaces. Acta Physica Sinica, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [2] Yan Zhi-Jin, Shi Wei. Radiation characteristics of terahertz GaAs photoconductive antenna arrays. Acta Physica Sinica, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [3] Li Ze-Yu, Jiang Qu-Han, Ma Teng-Zhou, Yuan Ying-Hao, Chen Lin. Multi-parameter tunable phase transition based terahertz graphene plasmons and its application. Acta Physica Sinica, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [4] Wang Jian, Zhang Chao-Yue, Yao Zhao-Yu, Zhang Chi, Xu Feng, Yang Yuan. A method of rapidly designing graphene-based terahertz diffusion surface. Acta Physica Sinica, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [5] Su Yu-Lun, Wei Zheng-Xing, Cheng Liang, Qi Jing-Bo. Terahertz emitters based on ultrafast spin-to-charge conversion. Acta Physica Sinica, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [6] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [7] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [8] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [9] Tao Ze-Hua, Dong Hai-Ming, Duan Yi-Feng. Photon-excited carriers and emission of graphene in terahertz radiation fields. Acta Physica Sinica, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [10] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [11] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [12] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [13] Li Na, Bai Ya, Liu Peng. Frequency control of the broadband ultrashort terahertz source generated from the laser induced plasma by two-color pluses. Acta Physica Sinica, 2016, 65(11): 110701. doi: 10.7498/aps.65.110701
    [14] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [15] Li Dan, Liu Yong, Wang Huai-Xing, Xiao Long-Sheng, Ling Fu-Ri, Yao Jian-Quan. Gain characteristics of grapheme plasmain terahertz range. Acta Physica Sinica, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [16] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [17] Deng Xin-Hua, Yuan Ji-Ren, Liu Jiang-Tao, Wang Tong-Biao. Tunable terahertz photonic crystal structures containing graphene. Acta Physica Sinica, 2015, 64(7): 074101. doi: 10.7498/aps.64.074101
    [18] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [19] Liang Wen-Long, Wang Yi-Man, Liu Wei, Li Hong-Yi, Wang Jin-Shu. Study of mini-themionic electron sources for vacuum electron THz devices. Acta Physica Sinica, 2014, 63(5): 057901. doi: 10.7498/aps.63.057901
    [20] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
Metrics
  • Abstract views:  11023
  • PDF Downloads:  1872
  • Cited By: 0
Publishing process
  • Received Date:  07 April 2015
  • Accepted Date:  05 June 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map