-
GaAs photoconductive switch illuminated by a femto-second laser has been widely used in a terabertz (THz) time domain spectroscopy system as a THz wave emission antenna. Now, all of the GaAs photoconductive switches are used in linear mode. However, when the GaAs photoconductive switch operates in an avalanche multiplication mode, the power capacity of output ultrafast electric pulse is much higher than that in a linear mode. So far, nobody has proposed the idea of generating THz waves by using the GaAs photoconductive switches in the avalanche multiplication mode. In this paper, we report the feasibility and research progress of using the GaAs photoconductive switches in the avalanche multiplication mode as the THz sources. By theoretical analysis and experimental research, some results are obtained experimentally as follows. 1) The GaAs photoconductive antenna can operate in an avalanche multiplication mode when illuminated by a femto-second laser pulse with an energy on the order of nJ. 2) The maintaining time of the avalanche multiplication mode, i.e, lock-on period, can be reduced by the quenching mode of photo-activated charge domain. These results lay the foundation for generating the high intensity THz emission by the GaAs photoconductive antenna with the avalanche multiplication mechanism.
-
Keywords:
- GaAs photoconductive switch /
- photoconductive antenna /
- photo-activated charge domain /
- avalanche multiplication
[1] Takano K, Chiyoda Y, Nishida T, Miyamaru F, Kawabata T, Sasaki H, Takeda M W, Hangyo M 2011 Appl. Phys. Lett. 99 161114
[2] Krause J, Wagner M, Winnerl S, Helm M, Stehr D 2011 Opt. Express 19 19114
[3] Shi W, Hou L, Wang X M 2011 J. Appl. Phys. 110 023111
[4] Rihani S, Faulks R, Beere H, Page H, Gregory I, Evans M, Ritchie D A, Peppe M 2009 Appl. Phys. Lett. 95 051106
[5] Gao Y H, Chen M K, Yin S, Ruffin P, Brantley C, Edwards E 2011 J. Appl. Phys. 109 033108
[6] Miyamaru F, Saito Y, Yamamoto K, Furuya T, Nishizawa S, Tani M 2010 Appl. Phys. Lett. 96 211104
[7] Lu L, Sun J D, Roger A L, Sun Y F, Wu D M, Cai Y, Qin H 2015 Chin. Phys. B 24 028504
[8] Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702
[9] Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S, Wu D M 2012 Chin. Phys. B 21 108504
[10] Loubriel G M, Zutavern F J, Baca A G, Hjalmarson H P, Plut T, Helgeson W D, Brown D J 1997 IEEE Trans. Plasma Sci. 25 124
[11] Jerry L H, Bailey D W, Dougal R A, Venkatesan V 1995 IEEE Trans. Power Electron. 10 615
[12] Shi W, Zhao W, Zhang X B, Li E L 2002 Acta Phys. Sin. 51 867 (in Chinese) [施卫, 赵卫, 张显斌, 李恩玲 2002 51 867]
[13] Islam N E, Schamiloglu E, Fleddermann C B 1998 Appl. Phys. Lett. 73 1988
[14] Shi W, Qu G H, Xu M, Xue H, Ji W L, Zhang L, Tian L Q 2009 Appl. Phys. Lett. 94 072110
[15] Shi W, Tian L Q, Liu Z, Zhang L Q, Zhang Z Z, Zhou L J, Liu H W, Xie W P 2008 Appl. Phys. Lett. 92 043511
[16] Shi W, Liang Z X 1999 Chin. J. Semicond. 21 53 (in Chinese) [施卫, 梁振宪 1999 半导体学报 21 53]
[17] Shi W 2001 Chin. J. Semicond. 22 1481
[18] Shi W, Chen E Z, Zhang X B, Li Q 2002 Chin. Phys. Lett. 19 1119
[19] Shi W, Tian L 2006 Appl. Phys. Lett. 89 202103
[20] Shi W, Dai H Y, Sun X W 2003 Chin. Opt. Lett. 1 553
[21] Tian L Q, Shi W 2008 J. Semicond. 29 1913
[22] Faulks R, Rihani S, Beere H E, Evans M J, Ritchie D A, Pepper M 2010 Appl. Phys. Lett. 96 081106
[23] Shi W, Zhang Z Z, Hou L 2010 Chin. Phys. Lett. 27 087203
[24] Diao J M, Du L, Ouyang J, Yang P, Nie Z P 2011 J. Electromagn. Waves Appl. 25 2236
[25] Ma Z, Ma H M, Yang C T, Feng K M 2011 J. Syst. Eng. Electron. 22 373
[26] Loubriel G M, Helgeson W D, McLaughlin D L, O'Malley M W, Zutavern F J, Rosen A, Stabile P J 1991 IEEE Trans. Electron Dev. 38 692
-
[1] Takano K, Chiyoda Y, Nishida T, Miyamaru F, Kawabata T, Sasaki H, Takeda M W, Hangyo M 2011 Appl. Phys. Lett. 99 161114
[2] Krause J, Wagner M, Winnerl S, Helm M, Stehr D 2011 Opt. Express 19 19114
[3] Shi W, Hou L, Wang X M 2011 J. Appl. Phys. 110 023111
[4] Rihani S, Faulks R, Beere H, Page H, Gregory I, Evans M, Ritchie D A, Peppe M 2009 Appl. Phys. Lett. 95 051106
[5] Gao Y H, Chen M K, Yin S, Ruffin P, Brantley C, Edwards E 2011 J. Appl. Phys. 109 033108
[6] Miyamaru F, Saito Y, Yamamoto K, Furuya T, Nishizawa S, Tani M 2010 Appl. Phys. Lett. 96 211104
[7] Lu L, Sun J D, Roger A L, Sun Y F, Wu D M, Cai Y, Qin H 2015 Chin. Phys. B 24 028504
[8] Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702
[9] Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S, Wu D M 2012 Chin. Phys. B 21 108504
[10] Loubriel G M, Zutavern F J, Baca A G, Hjalmarson H P, Plut T, Helgeson W D, Brown D J 1997 IEEE Trans. Plasma Sci. 25 124
[11] Jerry L H, Bailey D W, Dougal R A, Venkatesan V 1995 IEEE Trans. Power Electron. 10 615
[12] Shi W, Zhao W, Zhang X B, Li E L 2002 Acta Phys. Sin. 51 867 (in Chinese) [施卫, 赵卫, 张显斌, 李恩玲 2002 51 867]
[13] Islam N E, Schamiloglu E, Fleddermann C B 1998 Appl. Phys. Lett. 73 1988
[14] Shi W, Qu G H, Xu M, Xue H, Ji W L, Zhang L, Tian L Q 2009 Appl. Phys. Lett. 94 072110
[15] Shi W, Tian L Q, Liu Z, Zhang L Q, Zhang Z Z, Zhou L J, Liu H W, Xie W P 2008 Appl. Phys. Lett. 92 043511
[16] Shi W, Liang Z X 1999 Chin. J. Semicond. 21 53 (in Chinese) [施卫, 梁振宪 1999 半导体学报 21 53]
[17] Shi W 2001 Chin. J. Semicond. 22 1481
[18] Shi W, Chen E Z, Zhang X B, Li Q 2002 Chin. Phys. Lett. 19 1119
[19] Shi W, Tian L 2006 Appl. Phys. Lett. 89 202103
[20] Shi W, Dai H Y, Sun X W 2003 Chin. Opt. Lett. 1 553
[21] Tian L Q, Shi W 2008 J. Semicond. 29 1913
[22] Faulks R, Rihani S, Beere H E, Evans M J, Ritchie D A, Pepper M 2010 Appl. Phys. Lett. 96 081106
[23] Shi W, Zhang Z Z, Hou L 2010 Chin. Phys. Lett. 27 087203
[24] Diao J M, Du L, Ouyang J, Yang P, Nie Z P 2011 J. Electromagn. Waves Appl. 25 2236
[25] Ma Z, Ma H M, Yang C T, Feng K M 2011 J. Syst. Eng. Electron. 22 373
[26] Loubriel G M, Helgeson W D, McLaughlin D L, O'Malley M W, Zutavern F J, Rosen A, Stabile P J 1991 IEEE Trans. Electron Dev. 38 692
Catalog
Metrics
- Abstract views: 7268
- PDF Downloads: 345
- Cited By: 0