Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of mini-themionic electron sources for vacuum electron THz devices

Liang Wen-Long Wang Yi-Man Liu Wei Li Hong-Yi Wang Jin-Shu

Citation:

Study of mini-themionic electron sources for vacuum electron THz devices

Liang Wen-Long, Wang Yi-Man, Liu Wei, Li Hong-Yi, Wang Jin-Shu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • THz technology has attracted great attention for decades of years. Among the wide research areas of THz technologies, vacuum electron terahertz radiation sources have obvious advantages in high power region. For the THz vacuum electro devices (VED), high current density electron beams with small dimensions are required. Nanosized scandia doped dispenser (SDD) cathodes have the capability to operate stably at pulsed current densities of over 100 A/ cm2 at 950 ℃ so it becomes the most promising cathodes to meet the requirements for THz VEDs. In this paper, we report a new approach for developing miniaturized electron beam sources on normal SDD cathodes. An electron beam of 400 μm in diameter has been directly generated on an SDD cathode by deposition of a Zr/W double-layer anti-emission film and followed by a focused ion beam (FIB) milling. Results indicate that the electron beam is able to provide a space charge limited (SCL) current density of over 50 A/cm2 at the operating temperature of 950 ℃ with proper laminarity and works stably for more than 1000 hours. The beam emission characteristics and the function of the anti-emission film have been discussed and related to the surface analysis results. The approach opens a new way for producing high emission mini-electron sources to satisfy the requirment of THz VEDs.
    • Funds: Project supported by the National Outstanding Young Investigator Grant of China (Grant No. 51225402), the National Natural Science Foundation of China (Grant No. 51071005), the Doctoral Fund of Ministry of Education of China (Grant No.20101103110018), and the High Tech 863 program of China.
    [1]

    Xu J Z, Zhang X C 2007 Terahertz Science and Application (Beijing: Peking University Press) p3 (in Chinese) [许景周, 张希成 2007 太赫兹科学技术和应用(北京: 北京大学出版社)第3页]

    [2]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 59 8459]

    [3]

    Feng J J, Li X H 2012 Proceedings of the 2012 annual meeting of Chinese Vacuum Society Lanzhou, September, 2012 p39 (in Chinese) [冯进军, 李兴辉 2012 中国真空学会 2012 学术年会论文集兰州, 2012年9月, p39]

    [4]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. on Teraheeth Science and Technology 1 54

    [5]

    Gaertner G 2012 J. Vac. Sci. Technol. B 30 060801

    [6]

    Tucek J, Basten M, Gallagher D, Kreischer K 2010 Proceedings of IVEC 2010 Monterey, USA, 18-20 May, 2010 p19

    [7]

    Green M 2008 Proceedings of IVEC 2008 Monterey, USA, 22-24 April, 2008 p3

    [8]

    Wang Y, Wang J, Liu W, Zhang K, Li J. 2007 IEEE Trans. Electron Devices 54 1061

    [9]

    Wang J, Liu W, Li L, Wang Y C, Wang Y, Zhou M 2009 IEEE Trans. Electron Devices 56 779

    [10]

    Liu W, Wang Y, Wang J, Wang Y C 2011 IEEE Trans. Electron Devices 58 1241.

    [11]

    Zhao J F, Gamzina D, Baig A, Barnett L, Luhmann N C 2012 Proceedings of IVEC 2012 Monterey, USA, 24-26 April, 2012 p47

    [12]

    Barik R, Bera A, Tanwar A K, Baek I K, Eom K, Sattorov M A, Min S H, Kwon O J, Park G S 2013 Int. J. Refract. Met. Hard Mat. 38 60

    [13]

    Wang Y, Wang J, Liu W, Zhang X, Li L 2011 J. Vac. Sci. Technol. B 29 04E106-1

    [14]

    Lawrence I R, Collins G, Read M, Miram G, Marsden D 2011 Terahertz Science and Technology 4 230

    [15]

    Srivastava A, Jin-Kyu So, Wang Y, Wang J, Raju R S, Park G S 2009 J Infrared Milli Terahz Waves 30 670

    [16]

    Wang J S, Wang Y M, Li L L, Liu W 2007 CN101075515A [王金淑, 王亦曼, 李莉莉, 刘伟 2007 CN101075515A]

    [17]

    Schneider P 1962 Vacuum 12 293

    [18]

    George M U. S patent 4263528 [ 1981-04-21]

    [19]

    Melngailis J 1987 J. Vac. Sci. Technol. B 5 469

    [20]

    Li L, Wang Y, Liu W, Wang Y C, Wang J, Srivastava A, Jin-Kyu So, Park G S 2009 IEEE Trans. Electron Devices 56 762

    [21]

    Pankey T J, Thomas R E 1981 Appl. Surf. Sci. 8 50

  • [1]

    Xu J Z, Zhang X C 2007 Terahertz Science and Application (Beijing: Peking University Press) p3 (in Chinese) [许景周, 张希成 2007 太赫兹科学技术和应用(北京: 北京大学出版社)第3页]

    [2]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 59 8459]

    [3]

    Feng J J, Li X H 2012 Proceedings of the 2012 annual meeting of Chinese Vacuum Society Lanzhou, September, 2012 p39 (in Chinese) [冯进军, 李兴辉 2012 中国真空学会 2012 学术年会论文集兰州, 2012年9月, p39]

    [4]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. on Teraheeth Science and Technology 1 54

    [5]

    Gaertner G 2012 J. Vac. Sci. Technol. B 30 060801

    [6]

    Tucek J, Basten M, Gallagher D, Kreischer K 2010 Proceedings of IVEC 2010 Monterey, USA, 18-20 May, 2010 p19

    [7]

    Green M 2008 Proceedings of IVEC 2008 Monterey, USA, 22-24 April, 2008 p3

    [8]

    Wang Y, Wang J, Liu W, Zhang K, Li J. 2007 IEEE Trans. Electron Devices 54 1061

    [9]

    Wang J, Liu W, Li L, Wang Y C, Wang Y, Zhou M 2009 IEEE Trans. Electron Devices 56 779

    [10]

    Liu W, Wang Y, Wang J, Wang Y C 2011 IEEE Trans. Electron Devices 58 1241.

    [11]

    Zhao J F, Gamzina D, Baig A, Barnett L, Luhmann N C 2012 Proceedings of IVEC 2012 Monterey, USA, 24-26 April, 2012 p47

    [12]

    Barik R, Bera A, Tanwar A K, Baek I K, Eom K, Sattorov M A, Min S H, Kwon O J, Park G S 2013 Int. J. Refract. Met. Hard Mat. 38 60

    [13]

    Wang Y, Wang J, Liu W, Zhang X, Li L 2011 J. Vac. Sci. Technol. B 29 04E106-1

    [14]

    Lawrence I R, Collins G, Read M, Miram G, Marsden D 2011 Terahertz Science and Technology 4 230

    [15]

    Srivastava A, Jin-Kyu So, Wang Y, Wang J, Raju R S, Park G S 2009 J Infrared Milli Terahz Waves 30 670

    [16]

    Wang J S, Wang Y M, Li L L, Liu W 2007 CN101075515A [王金淑, 王亦曼, 李莉莉, 刘伟 2007 CN101075515A]

    [17]

    Schneider P 1962 Vacuum 12 293

    [18]

    George M U. S patent 4263528 [ 1981-04-21]

    [19]

    Melngailis J 1987 J. Vac. Sci. Technol. B 5 469

    [20]

    Li L, Wang Y, Liu W, Wang Y C, Wang J, Srivastava A, Jin-Kyu So, Park G S 2009 IEEE Trans. Electron Devices 56 762

    [21]

    Pankey T J, Thomas R E 1981 Appl. Surf. Sci. 8 50

  • [1] Cheng Hong-Yang, Ma Qian-Ru, Xu Hao-Ran, Zhang Hui-Ping, Jin Zuan-Ming, He Wei, Peng Yan. Terahertz emission characterization of silicon based ferromagnetic heterostructures. Acta Physica Sinica, 2024, 73(16): 167801. doi: 10.7498/aps.73.20240703
    [2] Yan Shao-Qi, Gao Ji-Kun, Chen Yue, Ma Yao, Zhu Xiao-Dong. Low-density plasmas generated by electron beams passing through silicon nitride window. Acta Physica Sinica, 2024, 73(14): 144102. doi: 10.7498/aps.73.20240302
    [3] Li Hang, Chen Ping, Tian Jin-Shou, Xue Yan-Hua, Wang Jun-Feng, Gou Yong-Sheng, Zhang Min-Rui, He Kai, Xu Xiang-Yan, Sai Xiao-Feng, Li Ya-Hui, Liu Bai-Yu, Wang Xiang-Lin, Xin Li-Wei, Gao Gui-Long, Wang Tao, Wang Xing, Zhao Wei. High time-resolution detector based on THz pulse accelerating and scanning electron beam. Acta Physica Sinica, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [4] Wu Man-Jin, Yao Bo-Zhi, Shi Li-Li, Chen Ben-Wen, Wu Jing-Bo, Zhang Cai-Hong, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Cryogenic blackbody calibration source for superconducting terahertz detectors. Acta Physica Sinica, 2022, 71(16): 168702. doi: 10.7498/aps.71.20220103
    [5] Research of a THz accelerating and scanning high time resolution detector. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210871
    [6] Su Yu-Lun, Wei Zheng-Xing, Cheng Liang, Qi Jing-Bo. Terahertz emitters based on ultrafast spin-to-charge conversion. Acta Physica Sinica, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [7] Li Na, Bai Ya, Liu Peng. Frequency control of the broadband ultrashort terahertz source generated from the laser induced plasma by two-color pluses. Acta Physica Sinica, 2016, 65(11): 110701. doi: 10.7498/aps.65.110701
    [8] Yu Xiao, Shen Jie, Zhong Hao-Wen, Zhang Jie, Zhang Gao-Long, Zhang Xiao-Fu, Yan Sha, Le Xiao-Yun. Simulation on surface morphology evolution of metal targets irradiated by intense pulsed electron beam. Acta Physica Sinica, 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [9] Shi Wei, Yan Zhi-Jin. Research progress on avalanche multiplication GaAs photoconductive terahertz emitter. Acta Physica Sinica, 2015, 64(22): 228702. doi: 10.7498/aps.64.228702
    [10] Feng Wei, Zhang Rong, Cao Jun-Cheng. Progress of terahertz devices based on graphene. Acta Physica Sinica, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [11] Li Yan, Cai Jie, Lü Peng, Zou Yang, Wan Ming-Zhen, Peng Dong-Jin, Gu Qian-Qian, Guan Qing-Feng. Surface microstructure and stress characteristics in pure titanium after high-current pulsed electron beam irradiation. Acta Physica Sinica, 2012, 61(5): 056105. doi: 10.7498/aps.61.056105
    [12] Xiao Yuan, Wang Xiao-Fang, Teng Jian, Chen Xiao-Hu, Chen Yuan, Hong Wei. Simulation study of radiography using laser-produced electron beam. Acta Physica Sinica, 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [13] Quan Rong-Hui, Zhang Zhen-Long, Han Jian-Wei, Huang Jian-Guo, Yan Xiao-Juan. Phenomenon of deep charging in polymer under electron beam irradiation. Acta Physica Sinica, 2009, 58(2): 1205-1211. doi: 10.7498/aps.58.1205
    [14] Zhang Yong-Hui, Chang An-Bi, Xiang Fei, Song Fa-Lun, Kang Qiang, Luo Min, Li Ming-Jia, Gong Sheng-Gang. Repetition rate of intense current electron-beam diodes using 20 GW pulsed source. Acta Physica Sinica, 2007, 56(10): 5754-5757. doi: 10.7498/aps.56.5754
    [15] Gong Hua-Rong, Gong Yu-Bin, Wei Yan-Yu, Tang Chang-Jian, Xue Dong-Hai, Wang Wen-Xiang. Analysis of ion noise with beam-wave interaction in klystron by two dimensional particle simulation method. Acta Physica Sinica, 2006, 55(10): 5368-5374. doi: 10.7498/aps.55.5368
    [16] Li Hong, Su Tie, Ouyang Liang, Wang Hui-Hui, Bai Xiao-Yan, Chen Zhi-Peng, Liu Wan-Dong. Numerical simulation of plasma of large-dimensions produced by injecting electron beam into air. Acta Physica Sinica, 2006, 55(7): 3506-3513. doi: 10.7498/aps.55.3506
    [17] Liu Zhi-Jian, Jiang Xing-Liu, Le Xiao-Yun, Wen Xiong-Wei. Analysis of pseudospark pulsed electron beam shape in transmission. Acta Physica Sinica, 2005, 54(9): 4229-4235. doi: 10.7498/aps.54.4229
    [18] Zhang Yong-Hui, Ma Qiao-Sheng, Xiang Fei, Gan Yan-Qing, Chang An-Bi, Liu Zhong, Zhou Chuan-Ming. Transmission technigue of repetition pulse and intense current electron-beam. Acta Physica Sinica, 2005, 54(7): 3111-3115. doi: 10.7498/aps.54.3111
    [19] YUAN JIN-SHE, CHEN GUANG-DE, QI MING, LI AI-ZHEN, XU ZHUO. XPS AND AES INVESTIGATION OF GaN FILMS GROWN BY MBE. Acta Physica Sinica, 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
    [20] HE YUAN-JIN, HU YONG, DAI LUN. AN IN-LINE ANALYSIS SYSTEM OF SLOW POSITRON BEAM FOR MOLECULAR BEAM EPITAXY. Acta Physica Sinica, 1992, 41(3): 517-522. doi: 10.7498/aps.41.517
Metrics
  • Abstract views:  6977
  • PDF Downloads:  548
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2013
  • Accepted Date:  23 November 2013
  • Published Online:  05 March 2014

/

返回文章
返回
Baidu
map