搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯的可调谐太赫兹光子晶体结构

邓新华 袁吉仁 刘江涛 王同标

引用本文:
Citation:

基于石墨烯的可调谐太赫兹光子晶体结构

邓新华, 袁吉仁, 刘江涛, 王同标

Tunable terahertz photonic crystal structures containing graphene

Deng Xin-Hua, Yuan Ji-Ren, Liu Jiang-Tao, Wang Tong-Biao
PDF
导出引用
  • 本文将石墨烯引入到常规光子晶体中构建一种新型光子晶体, 首次从理论上严格导出了决定其能带结构的色散关系, 由于色散关系中石墨烯电导率的存在导致了它具有与常规光子晶体有所不同的特殊光学性质, 我们发现, 随着费米能增大, 低频段能带迅速向高频移动, 而高频段能带移动缓慢, 导致了常规光子晶体没有的能带压缩现象的发生, 究其原因在于石墨烯在低频段电导率迅速变化, 而高频段电导率变化缓慢, 导致能带向高频压缩, 使得光波原先允许频率变成禁止传播, 而禁止频率变成允许传播.
    We introduce graphene into conventional photonic crystals to build new photonic crystal structures, and strictly derive the dispersion relations of the structures based on the electromagnetic boundary conditions and the Maxwell's equations required. The dispersion relations are different from that of the conventional photonic crystals, and the optical properties of the structures may also differ from that of the conventional photonic crystals because of the presence of graphene conductivity in the dispersion relations. By changing the Fermi energy of graphene, the conductivity of it can be changed, the dispersion relations adjusted, the energy band structure altered, and its light propagation manipulated as well. With increasing Fermi energy, the energy band can be transformed from the allowed bands to the prohibited bands and then transformed along the opposite direction to the allowed bands. Because the conductivity changes rapidly in low frequency range, while changes slowly in high frequency range, as the Fermi energy increases, the energy band in the low frequency region will move quickly to higher frequency region, and the energy band in the high frequency region moves slowly, leading to the band compression and mutual conversion between the allowed and the prohibited bands. The larger the Fermi energy, the more obvious the band compression, and the more easy the mutual conversion.
    • 基金项目: 国家自然科学基金(批准号: 61464007, 11364033和11264029)、江西省自然科学基金(批准号: 20122BAB202002)、毫米波国家重点实验室开放课题(批准号: K201216)和江西省博士后科学基金(批准号: 2014KY32)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 61464007, 11364033, 11264029), the Open Research Fund of State Key Laboratory of Millimeter Waves, China (Grant No. K201216), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20122BAB202002), and the Postdoctoral Science Foundation of Jiangxi Province, China (Grant No. 2014KY32).
    [1]

    Shen Y C, Lo T, Taday P F, Cole B E, Tribe W R, Kemp M C 2005 Appl. Phys. Lett. 86 241116

    [2]

    Jacobsen R H, Mittleman D M, Nuss M C 1996 Opt. Lett. 21 2011

    [3]

    Markelz A G, Roitberg A, Heilweil E J 2000 Chem. Phys. Lett. 320 42

    [4]

    Yoneyama H, Yamashita M, Kasai S, Kawase K, Ito H, Ouchi T 2008 Opt. Commun. 281 1909

    [5]

    Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L, Bing P B 2011 Chin. Phys. B 20 054207

    [6]

    Chen D P, Xing C F, Zhang Z, Zhang C L 2012 Acta Phys. Sin. 61 024202 (in Chinese) [陈大鹏, 邢春飞, 张峥, 张存林 2012 61 024202]

    [7]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [8]

    Zhang S, Fan W, Panio N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [10]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nature Materials 11 936

    [11]

    Rodriguez B S, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nature Communications 3 780

    [12]

    Zuo Z G, Wang P, Ling F R, Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304

    [13]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 63 057803]

    [14]

    Zhang Y P, Zhang H Y, Yin Y H, Liu L Y, Zhang X, Gao Y, Zhang H Y 2012 Acta Phys. Sin. 61 047803 (in Chinese) [张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云 2012 61 047803]

    [15]

    Mao Q, Wen Q Y, Tian W, Wen T L, Chen Z, Yang Q H, Zhang H W 2014 Opt. Lett. 39 5649

    [16]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [17]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [18]

    Koppens F H L, Chang D E, Garca de Abajo F J 2011 Nano Lett. 11 3370

    [19]

    Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y, Loh K P 2011 Nat. Photonics 5 411

  • [1]

    Shen Y C, Lo T, Taday P F, Cole B E, Tribe W R, Kemp M C 2005 Appl. Phys. Lett. 86 241116

    [2]

    Jacobsen R H, Mittleman D M, Nuss M C 1996 Opt. Lett. 21 2011

    [3]

    Markelz A G, Roitberg A, Heilweil E J 2000 Chem. Phys. Lett. 320 42

    [4]

    Yoneyama H, Yamashita M, Kasai S, Kawase K, Ito H, Ouchi T 2008 Opt. Commun. 281 1909

    [5]

    Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L, Bing P B 2011 Chin. Phys. B 20 054207

    [6]

    Chen D P, Xing C F, Zhang Z, Zhang C L 2012 Acta Phys. Sin. 61 024202 (in Chinese) [陈大鹏, 邢春飞, 张峥, 张存林 2012 61 024202]

    [7]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [8]

    Zhang S, Fan W, Panio N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [10]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nature Materials 11 936

    [11]

    Rodriguez B S, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nature Communications 3 780

    [12]

    Zuo Z G, Wang P, Ling F R, Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304

    [13]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 63 057803]

    [14]

    Zhang Y P, Zhang H Y, Yin Y H, Liu L Y, Zhang X, Gao Y, Zhang H Y 2012 Acta Phys. Sin. 61 047803 (in Chinese) [张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云 2012 61 047803]

    [15]

    Mao Q, Wen Q Y, Tian W, Wen T L, Chen Z, Yang Q H, Zhang H W 2014 Opt. Lett. 39 5649

    [16]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [17]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [18]

    Koppens F H L, Chang D E, Garca de Abajo F J 2011 Nano Lett. 11 3370

    [19]

    Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y, Loh K P 2011 Nat. Photonics 5 411

  • [1] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器.  , 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [2] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源.  , 2021, (): . doi: 10.7498/aps.70.20211831
    [3] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [4] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法.  , 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [5] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用.  , 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [6] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控.  , 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [7] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射.  , 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [8] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面.  , 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [9] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性.  , 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [10] 邓新华, 刘江涛, 袁吉仁, 王同标. 全新的电导率特征矩阵方法及其在石墨烯THz频率光学特性上的应用.  , 2015, 64(5): 057801. doi: 10.7498/aps.64.057801
    [11] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展.  , 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [12] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究.  , 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [13] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收.  , 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [14] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构.  , 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [15] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究.  , 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [16] 刘建丰, 周庆莉, 施宇蕾, 李磊, 赵冬梅, 张存林. 基底对亚波长金属双环结构太赫兹透射性质的影响.  , 2012, 61(4): 048101. doi: 10.7498/aps.61.048101
    [17] 白晋军, 王昌辉, 侯宇, 范飞, 常胜江. 太赫兹双芯光子带隙光纤定向耦合器.  , 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [18] 白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江. 低损宽频高双折射太赫兹光子带隙光纤.  , 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [19] 范飞, 郭展, 白晋军, 王湘晖, 常胜江. 多功能磁光子晶体太赫兹可调偏振控制器件.  , 2011, 60(8): 084219. doi: 10.7498/aps.60.084219
    [20] 孟田华, 赵国忠, 张存林. 亚波长分形结构太赫兹透射增强的机理研究.  , 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
计量
  • 文章访问数:  6835
  • PDF下载量:  632
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-19
  • 修回日期:  2014-11-17
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map