Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Uniform irradiation of a direct drive target by optimizing the beam parameters

Li Hong-Xun Zhang Rui Zhu Na Tian Xiao-Cheng Xu Dang-Peng Zhou Dan-Dan Zong Zhao-Yu Fan Meng-Qiu Xie Liang-Hua Zheng Tian-Ran Li Zhao-Li

Citation:

Uniform irradiation of a direct drive target by optimizing the beam parameters

Li Hong-Xun, Zhang Rui, Zhu Na, Tian Xiao-Cheng, Xu Dang-Peng, Zhou Dan-Dan, Zong Zhao-Yu, Fan Meng-Qiu, Xie Liang-Hua, Zheng Tian-Ran, Li Zhao-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Laser driven fusion requires a high-degree uniformity in laser energy deposition in order to achieve the high-density compression required for sustaining a thermonuclear burn. Nowadays, uniform irradiation of capsule is still a key issue in direct drive inertial confinement fusion. The direct drive approach is to drive the target with laser light, by irradiating it with a large number of overlapping laser beams. In the direct drive scheme, the laser deposition pattern on the target can be decomposed into a series of Legendre spherical harmonic modes. The high mode (shorter wavelength) nonuniformity can lead to Rayleigh-Taylor instability, which may result in the failure of target compression. This nonuniformity can be suppressed by thermal conduction and beam conditioning technologies, such as continuous phase plate, smoothing by spectral dispersion and polarization smoothing. The low mode (longer wavelength) nonuniformity is related to the number, orientation and power balance of laser beams, which is hard to suppress by thermal conduction and beam conditioning technologies. Generally, the nonuniformity of laser irradiation on a directly driven target should be less than 1% (root mean square, RMS), to meet the requirement for symmetric compression. Several methods have been proposed to optimize the irradiation configuration in direct drive laser fusion, such as truncated icosahedron with beams at the 20 faces and 12 vertices of an icosaherdron, dodecahedron-based irradiation configurations, self-organizing electrodynamic method, etc. However, limited by the different parameters of incident beams, the irradiation uniformity is often not satisfactory. Therefore, it is necessary to find new way to improve the irradiation uniformity and make it more robust. According to the analytical result, the irradiation nonuniformity can be decomposed into the single beam factor and the geometric factor. Simulation results show that the single beam factor is mainly determined by the parameters of the incident beams, including beam pattern, beam width and beam wavelength. By analyzing and simulating the single beam factor with different incident beam parameters, and comparing the single beam factor with the geometric factor, a matching relationship between them is found by using the optimized parameters. Based on the simulation results, a method to optimize the incident beam parameters is proposed, which is applied to the 32-beam and 48-beam irradiation configurations. The results show that there is a set of optimal incident beam parameters which can attain the highest irradiation uniformity for a given configuration. The feasibility to achieve more uniform irradiation by optimizing the incident beam parameters is proved. When the single beam factor is optimized in a directly driven inertial confinement fusion system, the restrictions on the beam pointing error and power imbalance between incident beams can be relaxed. The results provide an effective method of designing and optimizing the uniform irradiation system of direct drive laser facility.
      Corresponding author: Zhang Rui, zhangrui8s-1@caep.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61475145).
    [1]

    Lindl J 1995 Phys. Plasmas 2 3933

    [2]

    Miller G H, Moses E I, Wuest C R 2004 Opt. Eng. 43 2841

    [3]

    Fleurot N, Cavailler C, Bourgade J L 2005 Fusion Eng. Des. 74 147

    [4]

    Zheng W, Zhang X, Wei X, Jing F, Sui Z, Zheng K, Yuan X, Jiang X, Su J, Zhou H, Li M 2008 J. Phys. Conf. Ser. 112 032009

    [5]

    Bodner S E, Colombant D G, Gardner J H, Lehmberg R H, Obenschain S P, Phillips L, Schmitt A J, Sethian J D, McCrory R L, Seka W, Verdon C P 1998 Phys. Plasmas 5 1901

    [6]

    Hallo L, Olazabal-Loumé M, Ribeyre X, Dréan V, Schurtz G, Feugeas J L, Breil J, Nicolaï P, Maire P H 2008 Plasma Phys. Control. Fusion 51 014001

    [7]

    Boehly T R, Brown D L, Craxton R S, Keck R L, Knauer J P, Kelly J H, Kessler T J, Kumpan S A, Loucks S J, Letzring S A, Marshall F J 1997 Opt. Commun. 133 495

    [8]

    Bodner S E 1981 J. Fusion Energy 1 221

    [9]

    Skupsky S, Lee K 1983 J. Appl. Phys. 54 3662

    [10]

    Emery M H, Gardner J H, Boris J P 1982 Phys. Rev. Lett. 48 677

    [11]

    Gardner J H, Bodner S E 1981 Phys. Rev. Lett. 47 1137

    [12]

    Zhang R, Li P, Su J Q, Wang J J, Li H, Geng Y C, Liang Y, Zhao R C, Dong J, Lu Z G, Zhou L D, Liu L Q, Lin H H, Xu D P, Deng Y, Zhu N, Jing F, Sui Z, Zhang X M 2012 Acta Phys. Sin. 61 054204 (in Chinese) [张锐, 李平, 粟敬钦, 王建军, 李海, 耿远超, 梁樾, 赵润昌, 董军, 卢宗贵, 周丽丹, 刘兰琴, 林宏奂, 许党朋, 邓颖, 朱娜, 景峰, 隋展, 张小民 2012 61 054204]

    [13]

    Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 63 164201]

    [14]

    Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202 (in Chinese) [李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 63 215202]

    [15]

    Garanin S G, Derkach V N, Shnyagin R A 2004 Quantum Electron. 34 427

    [16]

    Schmitt A J 1984 Appl. Phys. Lett. 44 399

    [17]

    Murakami M 1995 Appl. Phys. Lett. 66 1587

    [18]

    Seidel J J 2001 J. Stat. Plan. Infer. 95 307

    [19]

    Murakami M, Sarukura N, Azechi H, Temporal M, Schmitt A J 2010 Phys. Plasmas 17 082702

    [20]

    Xu T, Xu L, Wang A, Gu C, Wang S, Liu J, Wei A 2013 Phys. Plasmas 20 122702

    [21]

    Temporal M, Canaud B, Garbett W J, Ramis R 2015 Phys. Plasmas 22 102709

    [22]

    Kruer W L 2003 The Physics of Laser Plasma Interactions (Oxford: Westview Press) p45

    [23]

    Xu T 2014 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [徐腾 2014 博士学位论文 (合肥: 中国科学技术大学)]

    [24]

    Li L, Gu C, Xu L, Zhou S 2016 Phys. Plasmas 23 043103

  • [1]

    Lindl J 1995 Phys. Plasmas 2 3933

    [2]

    Miller G H, Moses E I, Wuest C R 2004 Opt. Eng. 43 2841

    [3]

    Fleurot N, Cavailler C, Bourgade J L 2005 Fusion Eng. Des. 74 147

    [4]

    Zheng W, Zhang X, Wei X, Jing F, Sui Z, Zheng K, Yuan X, Jiang X, Su J, Zhou H, Li M 2008 J. Phys. Conf. Ser. 112 032009

    [5]

    Bodner S E, Colombant D G, Gardner J H, Lehmberg R H, Obenschain S P, Phillips L, Schmitt A J, Sethian J D, McCrory R L, Seka W, Verdon C P 1998 Phys. Plasmas 5 1901

    [6]

    Hallo L, Olazabal-Loumé M, Ribeyre X, Dréan V, Schurtz G, Feugeas J L, Breil J, Nicolaï P, Maire P H 2008 Plasma Phys. Control. Fusion 51 014001

    [7]

    Boehly T R, Brown D L, Craxton R S, Keck R L, Knauer J P, Kelly J H, Kessler T J, Kumpan S A, Loucks S J, Letzring S A, Marshall F J 1997 Opt. Commun. 133 495

    [8]

    Bodner S E 1981 J. Fusion Energy 1 221

    [9]

    Skupsky S, Lee K 1983 J. Appl. Phys. 54 3662

    [10]

    Emery M H, Gardner J H, Boris J P 1982 Phys. Rev. Lett. 48 677

    [11]

    Gardner J H, Bodner S E 1981 Phys. Rev. Lett. 47 1137

    [12]

    Zhang R, Li P, Su J Q, Wang J J, Li H, Geng Y C, Liang Y, Zhao R C, Dong J, Lu Z G, Zhou L D, Liu L Q, Lin H H, Xu D P, Deng Y, Zhu N, Jing F, Sui Z, Zhang X M 2012 Acta Phys. Sin. 61 054204 (in Chinese) [张锐, 李平, 粟敬钦, 王建军, 李海, 耿远超, 梁樾, 赵润昌, 董军, 卢宗贵, 周丽丹, 刘兰琴, 林宏奂, 许党朋, 邓颖, 朱娜, 景峰, 隋展, 张小民 2012 61 054204]

    [13]

    Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 63 164201]

    [14]

    Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202 (in Chinese) [李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 63 215202]

    [15]

    Garanin S G, Derkach V N, Shnyagin R A 2004 Quantum Electron. 34 427

    [16]

    Schmitt A J 1984 Appl. Phys. Lett. 44 399

    [17]

    Murakami M 1995 Appl. Phys. Lett. 66 1587

    [18]

    Seidel J J 2001 J. Stat. Plan. Infer. 95 307

    [19]

    Murakami M, Sarukura N, Azechi H, Temporal M, Schmitt A J 2010 Phys. Plasmas 17 082702

    [20]

    Xu T, Xu L, Wang A, Gu C, Wang S, Liu J, Wei A 2013 Phys. Plasmas 20 122702

    [21]

    Temporal M, Canaud B, Garbett W J, Ramis R 2015 Phys. Plasmas 22 102709

    [22]

    Kruer W L 2003 The Physics of Laser Plasma Interactions (Oxford: Westview Press) p45

    [23]

    Xu T 2014 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [徐腾 2014 博士学位论文 (合肥: 中国科学技术大学)]

    [24]

    Li L, Gu C, Xu L, Zhou S 2016 Phys. Plasmas 23 043103

  • [1] Tian Bo-Yu, Zhong Zhe-Qiang, Sui Zhan, Zhang Bin, Yuan Xiao. Ultrafast azimuthal beam smoothing scheme based on vortex beam. Acta Physica Sinica, 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [2] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [3] Xiao De-Long, Dai Zi-Huan, Sun Shun-Kai, Ding Ning, Zhang Yang, Wu Ji-Ming, Yin Li, Shu Xiao-Jian. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion. Acta Physica Sinica, 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [4] Zhong Zhe-Qiang, Hou Peng-Cheng, Zhang Bin. A novel radial beam smoothing scheme based on optical Kerr effect. Acta Physica Sinica, 2016, 65(9): 094207. doi: 10.7498/aps.65.094207
    [5] Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min. Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Physica Sinica, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [6] Wang Feng, Peng Xiao-Shi, Xue Quan-Xi, Xu Tao, Wei Hui-Yue. Quasi-isentropic experiment based on Shen Guang-III prototype laser facility with laser direct drive illumination. Acta Physica Sinica, 2015, 64(8): 085202. doi: 10.7498/aps.64.085202
    [7] Zhong Zhe-Qiang, Hu Xiao-Chuan, Li Ze-Long, Ye Rong, Zhang Bin. A novel fast zooming scheme for direct-driven laser fusion. Acta Physica Sinica, 2015, 64(5): 054209. doi: 10.7498/aps.64.054209
    [8] Deng Xue-Wei, Zhou Wei, Yuan Qiang, Dai Wan-Jun, Hu Dong-Xia, Zhu Qi-Hua, Jing Feng. Capsule illumination uniformity illuminated by direct laser-driven irradiation from several tens of directions. Acta Physica Sinica, 2015, 64(19): 195203. doi: 10.7498/aps.64.195203
    [9] Li Ze-Long, Zhong Zhe-Qiang, Zhang Bin. Study on multi-beam superposition using complementary polarization control plates. Acta Physica Sinica, 2014, 63(9): 095204. doi: 10.7498/aps.63.095204
    [10] Ning Cheng, Feng Zhi-Xing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [11] Zhang Zhan-Wen, Qi Xiao-Bo, Li Bo. Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments. Acta Physica Sinica, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [12] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [13] Zhan Jiang-Hui, Yao Xin, Gao Fu-Hua, Yang Ze-Jian, Zhang Yi-Xiao, Guo Yong-Kang. Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertialconfinement fusion driver. Acta Physica Sinica, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [14] Cheng Wen-Yong, Zhang Xiao-Min, Su Jing-Qin, Zhao Sheng-Zhi, Dong Jun, Li Ping, Zhou Li-Dan. Suppression of small-scale self focusing of high power laser using moving beam. Acta Physica Sinica, 2009, 58(10): 7012-7016. doi: 10.7498/aps.58.7012
    [15] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [16] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [17] Yao Xin, Gao Fu-Hua, Li Jian-Feng, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang. Study on the near field modulation and laser induced damage of beam sampling grating. Acta Physica Sinica, 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [18] Cheng Jin-Xiu, Zheng Zhi-Jian, Chen Hong-Su, Miao Wen-Yong, Chen Bo, Wang Yao-Mei, Hu Xin. Implosion compression characteristic of direct-driven ablation target with 1.06μm laser. Acta Physica Sinica, 2004, 53(10): 3419-3423. doi: 10.7498/aps.53.3419
    [19] Qi Lan-Ying, Chen Jia-Bin, Jiang Xiao-Hua, Liu Shen-Ye, Zheng Zhi-Jian, Zhang Bao-Han, Ding Yong-Kun, Li Chao-Guang, Wang Da-Hai, Zhu Shen-Chang, Zhang Jia-Tai. . Acta Physica Sinica, 2002, 51(9): 2068-2073. doi: 10.7498/aps.51.2068
    [20] YANG HONG-QIONG, YANG JIAN-LUN, WEN SHU-HUAI, WANG GEN-XING, GUO YU-ZHI, TANG ZHENG-YUAN, MU WEI-BING, MA CHI. DT FUEL AREAL DENSITY DIAGNOSTIC IN DIRECT-DRIVEN IMPLOSIONS. Acta Physica Sinica, 2001, 50(12): 2408-2412. doi: 10.7498/aps.50.2408
Metrics
  • Abstract views:  5908
  • PDF Downloads:  139
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2016
  • Accepted Date:  07 March 2017
  • Published Online:  05 May 2017

/

返回文章
返回
Baidu
map