Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of dynamic thermal characteristics of cryogenic target

Chen Peng-Wei Li Yan-Zhong Li Cui Dai Fei Ding Lan Xin Yi

Citation:

Numerical simulation of dynamic thermal characteristics of cryogenic target

Chen Peng-Wei, Li Yan-Zhong, Li Cui, Dai Fei, Ding Lan, Xin Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Fusion power offers the prospect of a safe and clean sustainable energy source, and is of increasing importance for meeting the world energy demand and curbing CO2 emissions. For an indirect-driven inertial confinement cryogenic target, the D-T ice layer inside the capsule should have a uniformity more than 99% and an inner surface roughness less than a root mean square value of 1 m to avoid Rayleigh-Taylor instabilities. And this highly smooth ice layer required for ignition is considered to be affected by the thermal environment around the fuel capsule. In the present study, a numerical investigation is conducted to examine the static and dynamic characteristics of the thermal environment outside the fuel capsule. Numerical model is proposed and verified by a simplified cryogenic target, and the calculated temperature distribution around the capsule shows to be in good agreement with the experimental data. Based on the established model, the propagation of periodic disturbance of cooling wall temperature in the hohlraum is investigated, and the relations between the temperature disturbance on the cooling wall and the temperature distribution around the capsule surface are obtained. The effects of disturbance amplitude, the disturbance period, and the hohlraum gas composition on the propagation process are investigated separately. The results indicate that for stable cooling temperature, the thermal environment around the capsule shows certain dependence on the gas filled in the hohlraum. The temperature uniformity of the capsule outer surface deteriorates with the increase of fill gas pressure but can be improved by increasing the He content of the filling gas mixture. At an oscillating cooling temperature, the attenuation of amplitude is significant when the periodic disturbance propagates from the cooling rings to the hohlraum and to the capsule surface. For the sine wave form disturbance investigated in the present study, shorter disturbance period results in larger attenuation of the disturbance amplitude. Higher gas pressure leads to smaller amplitude of average temperature on the capsule outer surface. The propagation process of cooling temperature disturbance also demonstrates dependence on the filling gas composition. The higher fraction of H2 in the He-H2 mixture helps to attenuate the disturbance amplitude and suppress the propagation of the temperature disturbance. However, the temperature uniformity around the capsule exhibits different characteristics from cooling temperature disturbance. Under the oscillating cooling conditions, moderate period, lower amplitude, lower pressure and higher fraction of He in the He-H2 mixture help to improve the temperature uniformity around the capsule. The results are of guiding significance for determining the controlling scheme in experiment and further design option for the cryogenic target.
      Corresponding author: Li Yan-Zhong, yzli-epe@mail.xjtu.edu.cn
    • Funds: Project supported by the National Special Program of China (Grant No. ***040304.1), the National Natural Science Foundation of China (Grant No. 51506158), and the State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing, China (Grant No. SKLTSCP1614).
    [1]

    Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303 (in Chinese)[张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 61 147303]

    [2]

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404 (in Chinese)[杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 64 038404]

    [3]

    Horvath A, Rachlew E 2016 Ambio 45 38

    [4]

    Chen W M, Kim H, Yamaguchi H 2014 Energ. Policy 74 31

    [5]

    Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204 (in Chinese)[张占文, 漆小波, 李波 2012 61 145204]

    [6]

    Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201 (in Chinese)[黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 64 215201]

    [7]

    Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357

    [8]

    Holmlid L 2014 J. Fusion Energ. 33 348

    [9]

    Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [10]

    Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci. Technol. 49 565

    [11]

    Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230 (in Chinese)[王凯, 谢端, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230]

    [12]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343

    [13]

    McKenty P W, Goncharov V N, Town R P J, Skupsky S, Betti R, McCrory R L 2001 Phys. Plasmas 8 2315

    [14]

    Martin M, Gauvin C, Moll G, Raphael O, Legaie O, Jeannot L 2013 Fusion Sci. Technol. 63 82

    [15]

    Moll G, Martin M, Baclet P 2007 Fusion Sci. Technol. 51 737

    [16]

    Moll G, Baclet P, Martin M 2006 Fusion Sci. Technol. 49 574

    [17]

    London R A, Kozioziemski B J, Marinak M M, Kerbel G D, Bittner D N 2005 Fusion Sci. Technol. 49 608

    [18]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese)[王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 63 185202]

    [19]

    Bi P, Liu Y Q, Tang Y J, Yang X D, Lei H L 2010 Acta Phys. Sin. 59 7531 (in Chinese)[毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐 2010 59 7531]

    [20]

    Yin J, Chen S H, Wen C W, Xia L D, Li H R, Huang X, Yu M M, Liang J H, Peng S M 2015 Acta Phys. Sin. 64 015202 (in Chinese)[尹剑, 陈绍华, 温成伟, 夏立东, 李海荣, 黄鑫, 余铭铭, 梁建华, 彭述明 2015 64 015202]

    [21]

    Moll G, Martin M, Collier R 2009 Fusion Sci. Technol. 55 283

    [22]

    Martin M, Gauvin C, Choux A, Baclet P, Pascal G 2006 Fusion Sci. Technol. 49 600

    [23]

    Martin M, Gauvin C, Choux A, Baclet P, Pascal G 2007 Fusion Sci. Technol. 51 747

    [24]

    Aleksandrova I V, Akunets A A, Koresheva E R, Koshelev E L, Timasheva T P 2016 Bull. Lebedev. Phys. Inst. 43 352

    [25]

    Wang K, Lin W, Liu Y Q, Xie D, Li J, Ma K Q, Tang Y J, Lei H L 2012 Acta Phys. Sin. 61 195204 (in Chinese)[王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐 2012 61 195204]

    [26]

    Motojima O, Yamada H, Ashikawa N, Emoto M, Funaba H, Goto M https://www.researchgate.net/publication/237125310_Recent_Development_of_LHD_Experiment 2003 J. Plasma Fusion Res. 5 22

    [27]

    Hamaguchi S, Imagawa S, Obana T, Yanagi N, Moriuchi S, Sekiguchi H, Oba K, Mito T, Motojima O, Okamura T, Semba T, Tyoshinaga S, Wakisaka H 1985 J. Heat Trans. 107 133

    [28]

    Zhong Z Y, Lloyd J R, Yang K T 1985 J. Heat Trans.107 133

    [29]

    Zhuang P, Liu F, Turner I, Gu Y T 2014 Appl. Math. Model. 38 3860

    [30]

    Haan S W, Atherton J, Clark D S, Hammel B A, Callahan D A, Cerjan C J, Dewald E L, Dixit S, Edwards M J, Glenzer S, Hatchett S P, Hicks D, Jones O S, Landen O L, Lindl J D, Marinak M M, MacGowan, B J, MacKinnon A J, Spears B K, Suter L J, Town R P, Weber S V, Kline J L, Wilson D C 2013 Fusion Sci. Technol. 63 67

    [31]

    Moll G, Martin M, Collier R 2011 Fusion Sci. Technol. 59 182

    [32]

    Martin M, Moll G, Lallet F, Choux A, Collier R, Legaie O, Jeannot L 2011 Fusion Sci. Technol. 59 166

    [33]

    Souers P C 1986 Hydrogen Properties for Fusion Energy (Berkeley: University of California Press) p106

    [34]

    Bari A, Zarco-Pernia E, De Mara J M G 2014 Appl.Therm. Eng. 63 304

    [35]

    Berger R L, Suter L J, Divol L, London R A, Chapman T, Froula D H, Meezan N B, Neumayer P, Glenzer S H 2015 Phys. Rev. E 91 031103

    [36]

    Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Lin Y, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Contr. Fusion 55 103001

    [37]

    Moll G, Charton S 2004 Fusion Sci. Technol. 45 233

  • [1]

    Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303 (in Chinese)[张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 61 147303]

    [2]

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404 (in Chinese)[杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 64 038404]

    [3]

    Horvath A, Rachlew E 2016 Ambio 45 38

    [4]

    Chen W M, Kim H, Yamaguchi H 2014 Energ. Policy 74 31

    [5]

    Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204 (in Chinese)[张占文, 漆小波, 李波 2012 61 145204]

    [6]

    Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201 (in Chinese)[黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 64 215201]

    [7]

    Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357

    [8]

    Holmlid L 2014 J. Fusion Energ. 33 348

    [9]

    Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [10]

    Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci. Technol. 49 565

    [11]

    Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230 (in Chinese)[王凯, 谢端, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230]

    [12]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343

    [13]

    McKenty P W, Goncharov V N, Town R P J, Skupsky S, Betti R, McCrory R L 2001 Phys. Plasmas 8 2315

    [14]

    Martin M, Gauvin C, Moll G, Raphael O, Legaie O, Jeannot L 2013 Fusion Sci. Technol. 63 82

    [15]

    Moll G, Martin M, Baclet P 2007 Fusion Sci. Technol. 51 737

    [16]

    Moll G, Baclet P, Martin M 2006 Fusion Sci. Technol. 49 574

    [17]

    London R A, Kozioziemski B J, Marinak M M, Kerbel G D, Bittner D N 2005 Fusion Sci. Technol. 49 608

    [18]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese)[王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 63 185202]

    [19]

    Bi P, Liu Y Q, Tang Y J, Yang X D, Lei H L 2010 Acta Phys. Sin. 59 7531 (in Chinese)[毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐 2010 59 7531]

    [20]

    Yin J, Chen S H, Wen C W, Xia L D, Li H R, Huang X, Yu M M, Liang J H, Peng S M 2015 Acta Phys. Sin. 64 015202 (in Chinese)[尹剑, 陈绍华, 温成伟, 夏立东, 李海荣, 黄鑫, 余铭铭, 梁建华, 彭述明 2015 64 015202]

    [21]

    Moll G, Martin M, Collier R 2009 Fusion Sci. Technol. 55 283

    [22]

    Martin M, Gauvin C, Choux A, Baclet P, Pascal G 2006 Fusion Sci. Technol. 49 600

    [23]

    Martin M, Gauvin C, Choux A, Baclet P, Pascal G 2007 Fusion Sci. Technol. 51 747

    [24]

    Aleksandrova I V, Akunets A A, Koresheva E R, Koshelev E L, Timasheva T P 2016 Bull. Lebedev. Phys. Inst. 43 352

    [25]

    Wang K, Lin W, Liu Y Q, Xie D, Li J, Ma K Q, Tang Y J, Lei H L 2012 Acta Phys. Sin. 61 195204 (in Chinese)[王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐 2012 61 195204]

    [26]

    Motojima O, Yamada H, Ashikawa N, Emoto M, Funaba H, Goto M https://www.researchgate.net/publication/237125310_Recent_Development_of_LHD_Experiment 2003 J. Plasma Fusion Res. 5 22

    [27]

    Hamaguchi S, Imagawa S, Obana T, Yanagi N, Moriuchi S, Sekiguchi H, Oba K, Mito T, Motojima O, Okamura T, Semba T, Tyoshinaga S, Wakisaka H 1985 J. Heat Trans. 107 133

    [28]

    Zhong Z Y, Lloyd J R, Yang K T 1985 J. Heat Trans.107 133

    [29]

    Zhuang P, Liu F, Turner I, Gu Y T 2014 Appl. Math. Model. 38 3860

    [30]

    Haan S W, Atherton J, Clark D S, Hammel B A, Callahan D A, Cerjan C J, Dewald E L, Dixit S, Edwards M J, Glenzer S, Hatchett S P, Hicks D, Jones O S, Landen O L, Lindl J D, Marinak M M, MacGowan, B J, MacKinnon A J, Spears B K, Suter L J, Town R P, Weber S V, Kline J L, Wilson D C 2013 Fusion Sci. Technol. 63 67

    [31]

    Moll G, Martin M, Collier R 2011 Fusion Sci. Technol. 59 182

    [32]

    Martin M, Moll G, Lallet F, Choux A, Collier R, Legaie O, Jeannot L 2011 Fusion Sci. Technol. 59 166

    [33]

    Souers P C 1986 Hydrogen Properties for Fusion Energy (Berkeley: University of California Press) p106

    [34]

    Bari A, Zarco-Pernia E, De Mara J M G 2014 Appl.Therm. Eng. 63 304

    [35]

    Berger R L, Suter L J, Divol L, London R A, Chapman T, Froula D H, Meezan N B, Neumayer P, Glenzer S H 2015 Phys. Rev. E 91 031103

    [36]

    Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Lin Y, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Contr. Fusion 55 103001

    [37]

    Moll G, Charton S 2004 Fusion Sci. Technol. 45 233

  • [1] Yang Wei-Ming, Duan Xiao-Xi, Zhang Chen, Li Yu-Long, Liu Hao, Guan Zan-Yang, Zhang Huan, Sun Liang, Dong Yun-Song, Yang Dong, Wang Zhe-Bin, Yang Jia-Min. Optimization and application of shock wave measurement technology for shock-timing experiments on small-scale capsules. Acta Physica Sinica, 2024, 73(12): 125203. doi: 10.7498/aps.73.20232000
    [2] Huang Tian-Xuan, Wu Chang-Shu, Chen Zhong-Jing, Yan Ji, Li Xin, Ge Feng-Jun, Zhang Xing, Jiang Wei, Deng Bo, Hou Li-Fei, Pu Yu-Dong, Dong Yun-Song, Wang Li-Feng. Improving symmetry tuning with I-raum in indirect-driven implosions. Acta Physica Sinica, 2023, 72(2): 025201. doi: 10.7498/aps.72.20220861
    [3] Zhang Qi, Ma Ji-Rui, Fan Jin-Yan, Zhang Jie. Analysis of design principles of the experiments on the National Ignition Facility since 2010. Acta Physica Sinica, 2022, 71(13): 135202. doi: 10.7498/aps.71.20220199
    [4] Zou Xiong, Qi Xiao-Bo, Zhang Tao-Xian, Gao Zhang-Fan, Huang Wei-Xing. Numerical simulation of filling and evacuating process of impurity gas in target capsule of inertial confinement fusion. Acta Physica Sinica, 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [5] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [6] Xiao De-Long, Dai Zi-Huan, Sun Shun-Kai, Ding Ning, Zhang Yang, Wu Ji-Ming, Yin Li, Shu Xiao-Jian. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion. Acta Physica Sinica, 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [7] Li Hong-Xun, Zhang Rui, Zhu Na, Tian Xiao-Cheng, Xu Dang-Peng, Zhou Dan-Dan, Zong Zhao-Yu, Fan Meng-Qiu, Xie Liang-Hua, Zheng Tian-Ran, Li Zhao-Li. Uniform irradiation of a direct drive target by optimizing the beam parameters. Acta Physica Sinica, 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [8] Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min. Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Physica Sinica, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [9] Deng Xue-Wei, Zhou Wei, Yuan Qiang, Dai Wan-Jun, Hu Dong-Xia, Zhu Qi-Hua, Jing Feng. Capsule illumination uniformity illuminated by direct laser-driven irradiation from several tens of directions. Acta Physica Sinica, 2015, 64(19): 195203. doi: 10.7498/aps.64.195203
    [10] Huang Xin, Peng Shu-Ming, Zhou Xiao-Song, Yu Ming-Ming, Yin Jian, Wen Cheng-Wei. Numerical simulation of heat transfer and natural convection of the indirect-driven cryogenic target. Acta Physica Sinica, 2015, 64(21): 215201. doi: 10.7498/aps.64.215201
    [11] Yan Ji, Zhang Xing, Zheng Jian-Hua, Yuan Yong-Teng, Kang Dong-Guo, Ge Feng-Jun, Chen Li, Song Zi-Feng, Yuan Zheng, Jiang Wei, Yu Bo, Chen Bo-Lun, Pu Yu-Dong, Huang Tian-Xuan. Variations of implosion performance with compression ratio in plastic DD filled capsule implosion experiment. Acta Physica Sinica, 2015, 64(12): 125203. doi: 10.7498/aps.64.125203
    [12] Jing Long-Fei, Huang Tian-Xuan, Jiang Shao-En, Chen Bo-Lun, Pu Yu-Dong, Hu Feng, Cheng Shu-Bo. Model analysis of experiments of implosion symmetry on Shenguang-Ⅱ and Shenguang-Ⅲ prototype laser facilities. Acta Physica Sinica, 2012, 61(10): 105205. doi: 10.7498/aps.61.105205
    [13] Yan Ji, Zheng Jian-Hua, Chen Li, Lin Zhi-Wei, Jiang Shao-En. The application of phase contrast imaging to implosion capsule diagnose in high energy density physics environment. Acta Physica Sinica, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [14] Zhang Zhan-Wen, Qi Xiao-Bo, Li Bo. Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments. Acta Physica Sinica, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [15] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [16] Zhan Jiang-Hui, Yao Xin, Gao Fu-Hua, Yang Ze-Jian, Zhang Yi-Xiao, Guo Yong-Kang. Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertialconfinement fusion driver. Acta Physica Sinica, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [17] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [18] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [19] Near field modulation and laser induced damage of color separation gratings and combined color separation gratings-beam sampling gratings optical elements for use in inertial confinement fusion system. Acta Physica Sinica, 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [20] TANG YONG-JIAN, ZHAO YONG-KUAN, JIANG WEI-YANG, ZHU ZHENG-HE, LIU YUAN-QIONG. LIQUID HYDROGEN ISOTOPES LAYER PROFILE INSIDE A CRYOGENIC INERTIA CONFINEMENT FUSION CAPSULE FOR AN ISOTHERMAL ENVIRONMENT. Acta Physica Sinica, 1999, 48(12): 2208-2214. doi: 10.7498/aps.48.2208
Metrics
  • Abstract views:  5969
  • PDF Downloads:  163
  • Cited By: 0
Publishing process
  • Received Date:  16 May 2017
  • Accepted Date:  10 June 2017
  • Published Online:  05 October 2017

/

返回文章
返回
Baidu
map