-
Fusion power offers the prospect of a safe and clean sustainable energy source, and is of increasing importance for meeting the world energy demand and curbing CO2 emissions. For an indirect-driven inertial confinement cryogenic target, the D-T ice layer inside the capsule should have a uniformity more than 99% and an inner surface roughness less than a root mean square value of 1 m to avoid Rayleigh-Taylor instabilities. And this highly smooth ice layer required for ignition is considered to be affected by the thermal environment around the fuel capsule. In the present study, a numerical investigation is conducted to examine the static and dynamic characteristics of the thermal environment outside the fuel capsule. Numerical model is proposed and verified by a simplified cryogenic target, and the calculated temperature distribution around the capsule shows to be in good agreement with the experimental data. Based on the established model, the propagation of periodic disturbance of cooling wall temperature in the hohlraum is investigated, and the relations between the temperature disturbance on the cooling wall and the temperature distribution around the capsule surface are obtained. The effects of disturbance amplitude, the disturbance period, and the hohlraum gas composition on the propagation process are investigated separately. The results indicate that for stable cooling temperature, the thermal environment around the capsule shows certain dependence on the gas filled in the hohlraum. The temperature uniformity of the capsule outer surface deteriorates with the increase of fill gas pressure but can be improved by increasing the He content of the filling gas mixture. At an oscillating cooling temperature, the attenuation of amplitude is significant when the periodic disturbance propagates from the cooling rings to the hohlraum and to the capsule surface. For the sine wave form disturbance investigated in the present study, shorter disturbance period results in larger attenuation of the disturbance amplitude. Higher gas pressure leads to smaller amplitude of average temperature on the capsule outer surface. The propagation process of cooling temperature disturbance also demonstrates dependence on the filling gas composition. The higher fraction of H2 in the He-H2 mixture helps to attenuate the disturbance amplitude and suppress the propagation of the temperature disturbance. However, the temperature uniformity around the capsule exhibits different characteristics from cooling temperature disturbance. Under the oscillating cooling conditions, moderate period, lower amplitude, lower pressure and higher fraction of He in the He-H2 mixture help to improve the temperature uniformity around the capsule. The results are of guiding significance for determining the controlling scheme in experiment and further design option for the cryogenic target.
-
Keywords:
- inertial confinement fusion /
- temperature fluctuates on capsule surface /
- temperature uniformity on capsule surface /
- thermal simulation
[1] Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303 (in Chinese)[张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 61 147303]
[2] Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404 (in Chinese)[杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 64 038404]
[3] Horvath A, Rachlew E 2016 Ambio 45 38
[4] Chen W M, Kim H, Yamaguchi H 2014 Energ. Policy 74 31
[5] Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204 (in Chinese)[张占文, 漆小波, 李波 2012 61 145204]
[6] Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201 (in Chinese)[黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 64 215201]
[7] Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357
[8] Holmlid L 2014 J. Fusion Energ. 33 348
[9] Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339
[10] Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci. Technol. 49 565
[11] Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230 (in Chinese)[王凯, 谢端, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230]
[12] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343
[13] McKenty P W, Goncharov V N, Town R P J, Skupsky S, Betti R, McCrory R L 2001 Phys. Plasmas 8 2315
[14] Martin M, Gauvin C, Moll G, Raphael O, Legaie O, Jeannot L 2013 Fusion Sci. Technol. 63 82
[15] Moll G, Martin M, Baclet P 2007 Fusion Sci. Technol. 51 737
[16] Moll G, Baclet P, Martin M 2006 Fusion Sci. Technol. 49 574
[17] London R A, Kozioziemski B J, Marinak M M, Kerbel G D, Bittner D N 2005 Fusion Sci. Technol. 49 608
[18] Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese)[王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 63 185202]
[19] Bi P, Liu Y Q, Tang Y J, Yang X D, Lei H L 2010 Acta Phys. Sin. 59 7531 (in Chinese)[毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐 2010 59 7531]
[20] Yin J, Chen S H, Wen C W, Xia L D, Li H R, Huang X, Yu M M, Liang J H, Peng S M 2015 Acta Phys. Sin. 64 015202 (in Chinese)[尹剑, 陈绍华, 温成伟, 夏立东, 李海荣, 黄鑫, 余铭铭, 梁建华, 彭述明 2015 64 015202]
[21] Moll G, Martin M, Collier R 2009 Fusion Sci. Technol. 55 283
[22] Martin M, Gauvin C, Choux A, Baclet P, Pascal G 2006 Fusion Sci. Technol. 49 600
[23] Martin M, Gauvin C, Choux A, Baclet P, Pascal G 2007 Fusion Sci. Technol. 51 747
[24] Aleksandrova I V, Akunets A A, Koresheva E R, Koshelev E L, Timasheva T P 2016 Bull. Lebedev. Phys. Inst. 43 352
[25] Wang K, Lin W, Liu Y Q, Xie D, Li J, Ma K Q, Tang Y J, Lei H L 2012 Acta Phys. Sin. 61 195204 (in Chinese)[王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐 2012 61 195204]
[26] Motojima O, Yamada H, Ashikawa N, Emoto M, Funaba H, Goto M https://www.researchgate.net/publication/237125310_Recent_Development_of_LHD_Experiment 2003 J. Plasma Fusion Res. 5 22
[27] Hamaguchi S, Imagawa S, Obana T, Yanagi N, Moriuchi S, Sekiguchi H, Oba K, Mito T, Motojima O, Okamura T, Semba T, Tyoshinaga S, Wakisaka H 1985 J. Heat Trans. 107 133
[28] Zhong Z Y, Lloyd J R, Yang K T 1985 J. Heat Trans.107 133
[29] Zhuang P, Liu F, Turner I, Gu Y T 2014 Appl. Math. Model. 38 3860
[30] Haan S W, Atherton J, Clark D S, Hammel B A, Callahan D A, Cerjan C J, Dewald E L, Dixit S, Edwards M J, Glenzer S, Hatchett S P, Hicks D, Jones O S, Landen O L, Lindl J D, Marinak M M, MacGowan, B J, MacKinnon A J, Spears B K, Suter L J, Town R P, Weber S V, Kline J L, Wilson D C 2013 Fusion Sci. Technol. 63 67
[31] Moll G, Martin M, Collier R 2011 Fusion Sci. Technol. 59 182
[32] Martin M, Moll G, Lallet F, Choux A, Collier R, Legaie O, Jeannot L 2011 Fusion Sci. Technol. 59 166
[33] Souers P C 1986 Hydrogen Properties for Fusion Energy (Berkeley: University of California Press) p106
[34] Bari A, Zarco-Pernia E, De Mara J M G 2014 Appl.Therm. Eng. 63 304
[35] Berger R L, Suter L J, Divol L, London R A, Chapman T, Froula D H, Meezan N B, Neumayer P, Glenzer S H 2015 Phys. Rev. E 91 031103
[36] Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Lin Y, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Contr. Fusion 55 103001
[37] Moll G, Charton S 2004 Fusion Sci. Technol. 45 233
-
[1] Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303 (in Chinese)[张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 61 147303]
[2] Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404 (in Chinese)[杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 64 038404]
[3] Horvath A, Rachlew E 2016 Ambio 45 38
[4] Chen W M, Kim H, Yamaguchi H 2014 Energ. Policy 74 31
[5] Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204 (in Chinese)[张占文, 漆小波, 李波 2012 61 145204]
[6] Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201 (in Chinese)[黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 64 215201]
[7] Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357
[8] Holmlid L 2014 J. Fusion Energ. 33 348
[9] Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339
[10] Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci. Technol. 49 565
[11] Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230 (in Chinese)[王凯, 谢端, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230]
[12] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343
[13] McKenty P W, Goncharov V N, Town R P J, Skupsky S, Betti R, McCrory R L 2001 Phys. Plasmas 8 2315
[14] Martin M, Gauvin C, Moll G, Raphael O, Legaie O, Jeannot L 2013 Fusion Sci. Technol. 63 82
[15] Moll G, Martin M, Baclet P 2007 Fusion Sci. Technol. 51 737
[16] Moll G, Baclet P, Martin M 2006 Fusion Sci. Technol. 49 574
[17] London R A, Kozioziemski B J, Marinak M M, Kerbel G D, Bittner D N 2005 Fusion Sci. Technol. 49 608
[18] Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese)[王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 63 185202]
[19] Bi P, Liu Y Q, Tang Y J, Yang X D, Lei H L 2010 Acta Phys. Sin. 59 7531 (in Chinese)[毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐 2010 59 7531]
[20] Yin J, Chen S H, Wen C W, Xia L D, Li H R, Huang X, Yu M M, Liang J H, Peng S M 2015 Acta Phys. Sin. 64 015202 (in Chinese)[尹剑, 陈绍华, 温成伟, 夏立东, 李海荣, 黄鑫, 余铭铭, 梁建华, 彭述明 2015 64 015202]
[21] Moll G, Martin M, Collier R 2009 Fusion Sci. Technol. 55 283
[22] Martin M, Gauvin C, Choux A, Baclet P, Pascal G 2006 Fusion Sci. Technol. 49 600
[23] Martin M, Gauvin C, Choux A, Baclet P, Pascal G 2007 Fusion Sci. Technol. 51 747
[24] Aleksandrova I V, Akunets A A, Koresheva E R, Koshelev E L, Timasheva T P 2016 Bull. Lebedev. Phys. Inst. 43 352
[25] Wang K, Lin W, Liu Y Q, Xie D, Li J, Ma K Q, Tang Y J, Lei H L 2012 Acta Phys. Sin. 61 195204 (in Chinese)[王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐 2012 61 195204]
[26] Motojima O, Yamada H, Ashikawa N, Emoto M, Funaba H, Goto M https://www.researchgate.net/publication/237125310_Recent_Development_of_LHD_Experiment 2003 J. Plasma Fusion Res. 5 22
[27] Hamaguchi S, Imagawa S, Obana T, Yanagi N, Moriuchi S, Sekiguchi H, Oba K, Mito T, Motojima O, Okamura T, Semba T, Tyoshinaga S, Wakisaka H 1985 J. Heat Trans. 107 133
[28] Zhong Z Y, Lloyd J R, Yang K T 1985 J. Heat Trans.107 133
[29] Zhuang P, Liu F, Turner I, Gu Y T 2014 Appl. Math. Model. 38 3860
[30] Haan S W, Atherton J, Clark D S, Hammel B A, Callahan D A, Cerjan C J, Dewald E L, Dixit S, Edwards M J, Glenzer S, Hatchett S P, Hicks D, Jones O S, Landen O L, Lindl J D, Marinak M M, MacGowan, B J, MacKinnon A J, Spears B K, Suter L J, Town R P, Weber S V, Kline J L, Wilson D C 2013 Fusion Sci. Technol. 63 67
[31] Moll G, Martin M, Collier R 2011 Fusion Sci. Technol. 59 182
[32] Martin M, Moll G, Lallet F, Choux A, Collier R, Legaie O, Jeannot L 2011 Fusion Sci. Technol. 59 166
[33] Souers P C 1986 Hydrogen Properties for Fusion Energy (Berkeley: University of California Press) p106
[34] Bari A, Zarco-Pernia E, De Mara J M G 2014 Appl.Therm. Eng. 63 304
[35] Berger R L, Suter L J, Divol L, London R A, Chapman T, Froula D H, Meezan N B, Neumayer P, Glenzer S H 2015 Phys. Rev. E 91 031103
[36] Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Lin Y, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Contr. Fusion 55 103001
[37] Moll G, Charton S 2004 Fusion Sci. Technol. 45 233
Catalog
Metrics
- Abstract views: 5969
- PDF Downloads: 163
- Cited By: 0