-
利用Z箍缩动态黑腔驱动靶丸内爆是实现惯性约束聚变可能的技术途径之一.聚龙一号装置已开展的动态黑腔实验初步表明形成了有效的动态黑腔辐射场,为驱动靶丸内爆研究奠定了重要基础.针对聚龙一号装置驱动条件,通过建立包含柱形动态黑腔与球形靶丸的柱球耦合物理模型,利用二维辐射磁流体力学程序,对Z箍缩动态黑腔驱动靶丸内爆动力学过程进行了数值模拟研究,获得了丝阵等离子体内爆、丝阵等离子体与泡沫转换体相互作用、冲击波产生和黑腔辐射传输、辐射烧蚀和燃料压缩的完整过程.在此基础上,研究了靶丸赤道面和两极的辐射源均匀性及燃料压缩对称性.结果表明,由于在泡沫转换体中的辐射传输以及黑腔-靶能量耦合过程,靶丸赤道面与两极辐射波形存在一定的时间差和峰值差,造成燃料压缩不对称.若减小靶丸半径,可以提高燃料压缩的对称性,但靶丸半径很小时聚变产额也较低;靶丸半径较大时,由于靶丸赤道面和两极辐射场时间和温度峰值的较大差异,燃料压缩呈现更为明显的不对称性.The dynamic hohlraum is a possible approach to driving inertial confinement fusion.Recently, dynamic hohlraum experiments on the primary test stand (PTS) facility were conducted, and preliminary results show that a dynamic hohlraum is formed, which can be used for driving target implosion.In this paper, the implosion dynamics of Z-pinch dynamic hohlraum driven target implosion with the drive current of PTS facility is numerically investigated.A physical model is established, in which a dynamic hohlraum is composed of a cylindrical tungsten wire-array and a CHO foam converter, and the target is composed of a high density CH ablator and low density DT fuel.The drive current is calculated by an equivalent circuit model, and the integrated simulations in (r, Z) plane by using a two-dimensional radiation magneto-hydrodynamics code are performed to describe the overall implosion dynamics.It is shown that the wire-array plasma is accelerated in the run-in stage, and in this stage the target keeps almost immobile.As the accelerated wire-array plasma impacts onto the low-density foam converter, a local region with high temperature and high pressure is generated near the W/CHO boundary due to energy thermalization, and this thermalization process will last several nanoseconds.This high temperature region will launch a strongly radiating shock.At the same time, high temperature radiation also appears and transfer to the target faster than the shock.When the high temperature radiation transfers to the surface of the target, the ablator is heated and the ablated plasma will expand outward, and a high-density flying layer will also be generated and propagate inward.After the high-density layer propagates to the ablator/fuel boundary, the DT fuel will be compressed to a high-density and high-temperature state finally.At the same time, the cylindrical shock, which is generated from the impact of the wire-array plasma on the foam converter, will gradually propagate to the ablator plasma.After it propagates over the converter/ablator boundary, it will be decelerated by the ablation pressure, which is beneficial to isolating the fuel compression from the direct cylindrical shock.It is shown that though the trajectories of the outer boundaries of the ablator at the equator and at the poles are completely different due to shock interaction at the equator, the fuel compression is nearly uniform due to radiation compression. It is shown that the asymmetry of fuel compression is mainly caused by the non-uniformity of the hohlraum radiation at the equator and at the poles.Generally, there are two differences between the radiation temperatures at the equator and at the poles, namely the time difference due to the finite velocity of radiation transfer, and the peak temperature difference due to energy coupling.If the target is small, the peak radiation temperature at the equator is almost the same as at the pole.The fuel at the equator is first compressed just because the radiation first transfers to the target equator.As the size of the target is increased, the difference in peak radiation temperature will be more serious, thus causing weaker fuel compression at the equator than at the poles.Certainly, if the target size is too large, the cylindrical shock will directly interact on the target at the equator, resulting in complete asymmetry at the equator with respect to the shock at the poles, which should be avoided.Furthermore, it is shown that as the target size is increased, the final neutron yield will first increase and then decrease, which means that there is a relatively optimal size selection for target implosion.
-
Keywords:
- Z-pinch /
- dynamic hohlraum /
- target implosion driven by radiation /
- inertial confinement fusion
[1] Cuneo M E, Herrmann M C, Sinars D B, et al. 2012 IEEE Trans. Plasma Sci. 40 3222
[2] Deeney C, Douglas M R, Spielman R B, et al. 1998 Phys. Rev. Lett. 81 4883
[3] Jones M C, Ampleford D J, Cuneo M E, et al. 2014 Rev. Sci. Instrum. 85 083501
[4] Mehlhorn T A, Bailey J E, Bennett G, et al. 2003 Plasma Phys. Control. Fusion 45 A325
[5] Vesey R A, Hermann M C, Lemke R W, et al. 2007 Phys. Plasmas 14 056302
[6] Slutz S A, Vesey R A 2012 Phys. Rev. Lett. 108 025003
[7] Slutz S A, Bailey J E, Chandler G A, et al. 2003 Phys. Plasmas 10 1875
[8] Slutz S A, Peterson K J, Vesey R A, et al. 2006 Phys. Plasmas 13 102701
[9] Smirnov V P 1991 Plasma Phys. Control. Fusion 33 1697
[10] Nash T J, Derzon M S, Allshouse G, et al. 1997 AIP Conference Proceedings 409 175
[11] Nash T J, Derzon M S, Chandler G A, et al. 1999 Phys. Plasmas 6 2023
[12] Bailey J E, Chandler G A, Slutz S A, et al. 2002 Phys. Rev. Lett. 89 095004
[13] Bailey J E, Chandler G A, Mancini R C, et al. 2006 Phys. Plasmas 13 056301
[14] Rochau G A, Bailey J E, Chandler G A, et al. 2007 Plasma Phys. Control. Fusion 49 B591
[15] Stygar W A, Awe T J, Bailey J E, et al. 2015 Phys. Rev. ST Accel. Beams 18 110401
[16] Grabovski E V 2013 IEEE Pulsed Power Plasma Science Conference San Francisco, USA, June 16-21, 2013
[17] Chen F X, Feng J H, Li L B, et al. 2013 Acta Phys. Sin. 62 045204 (in Chinese)[陈法新, 冯璟华, 李林波, 等 2013 62 045204]
[18] Jiang S Q, Ning J M, Chen F X, et al. 2013 Acta Phys. Sin. 62 155203 (in Chinese)[蒋树庆, 甯家敏, 陈法新, 等 2013 62 155203]
[19] Xiao D L, Ding N, Ye F, et al. 2014 Phys. Plasmas 21 042704
[20] Xu R K, Li Z H, Yang J L, et al. 2011 Acta Phys. Sin. 60 045208 (in Chinese)[徐荣昆, 李正宏, 杨建伦, 等 2011 60 045208]
[21] Deng J J, Xie W P, Feng S P, et al. 2016 Matter Radiat. Extremes 1 48
[22] Xiao D L, Sun S K, Xue C, Zhang Y, Ding N 2015 Acta Phys. Sin. 64 235203 (in Chinese)[肖德龙, 孙顺凯, 薛创, 张扬, 丁宁 2015 64 235203]
[23] Meng S J, Hu Q Y, Ning J M, et al. 2017 Phys. Plasmas 24 014505
[24] Xiao D L, Ye F, Meng S J, et al. 2017 Phys. Plasmas 24 092701
[25] Sanford T W L, Allshouse G O, Marder B M, et al. 1996 Phys. Rev. Lett. 77 5063
[26] Lemke R W, Bailey J E, Chandler G A, et al. 2005 Phys. Plasmas 12 012703
[27] Rochau G A, Bailey J E, Maron J E, et al. 2008 Phys. Rev. Lett. 100 125004
[28] Ding N, Wu J M, Dai Z H, et al. 2010 Acta Phys. Sin. 59 8707 (in Chinese)[丁宁, 邬吉明, 戴自换, 等 2010 59 8707]
[29] Xiao D L, Sun S K, Zhao Y K, et al. 2015 Phys. Plasmas 22 052709
[30] Ding N, Zhang Y, Xiao D L, et al. 2016 Matter Radiat. Extremes 1 135
[31] Xue C, Ding N, Xiao D L, et al. 2016 High Power Laser and Particle Beams 28 125004 (in Chinese)[薛创, 丁宁, 肖德龙, 等 2016 强激光与离子束 28 125004]
-
[1] Cuneo M E, Herrmann M C, Sinars D B, et al. 2012 IEEE Trans. Plasma Sci. 40 3222
[2] Deeney C, Douglas M R, Spielman R B, et al. 1998 Phys. Rev. Lett. 81 4883
[3] Jones M C, Ampleford D J, Cuneo M E, et al. 2014 Rev. Sci. Instrum. 85 083501
[4] Mehlhorn T A, Bailey J E, Bennett G, et al. 2003 Plasma Phys. Control. Fusion 45 A325
[5] Vesey R A, Hermann M C, Lemke R W, et al. 2007 Phys. Plasmas 14 056302
[6] Slutz S A, Vesey R A 2012 Phys. Rev. Lett. 108 025003
[7] Slutz S A, Bailey J E, Chandler G A, et al. 2003 Phys. Plasmas 10 1875
[8] Slutz S A, Peterson K J, Vesey R A, et al. 2006 Phys. Plasmas 13 102701
[9] Smirnov V P 1991 Plasma Phys. Control. Fusion 33 1697
[10] Nash T J, Derzon M S, Allshouse G, et al. 1997 AIP Conference Proceedings 409 175
[11] Nash T J, Derzon M S, Chandler G A, et al. 1999 Phys. Plasmas 6 2023
[12] Bailey J E, Chandler G A, Slutz S A, et al. 2002 Phys. Rev. Lett. 89 095004
[13] Bailey J E, Chandler G A, Mancini R C, et al. 2006 Phys. Plasmas 13 056301
[14] Rochau G A, Bailey J E, Chandler G A, et al. 2007 Plasma Phys. Control. Fusion 49 B591
[15] Stygar W A, Awe T J, Bailey J E, et al. 2015 Phys. Rev. ST Accel. Beams 18 110401
[16] Grabovski E V 2013 IEEE Pulsed Power Plasma Science Conference San Francisco, USA, June 16-21, 2013
[17] Chen F X, Feng J H, Li L B, et al. 2013 Acta Phys. Sin. 62 045204 (in Chinese)[陈法新, 冯璟华, 李林波, 等 2013 62 045204]
[18] Jiang S Q, Ning J M, Chen F X, et al. 2013 Acta Phys. Sin. 62 155203 (in Chinese)[蒋树庆, 甯家敏, 陈法新, 等 2013 62 155203]
[19] Xiao D L, Ding N, Ye F, et al. 2014 Phys. Plasmas 21 042704
[20] Xu R K, Li Z H, Yang J L, et al. 2011 Acta Phys. Sin. 60 045208 (in Chinese)[徐荣昆, 李正宏, 杨建伦, 等 2011 60 045208]
[21] Deng J J, Xie W P, Feng S P, et al. 2016 Matter Radiat. Extremes 1 48
[22] Xiao D L, Sun S K, Xue C, Zhang Y, Ding N 2015 Acta Phys. Sin. 64 235203 (in Chinese)[肖德龙, 孙顺凯, 薛创, 张扬, 丁宁 2015 64 235203]
[23] Meng S J, Hu Q Y, Ning J M, et al. 2017 Phys. Plasmas 24 014505
[24] Xiao D L, Ye F, Meng S J, et al. 2017 Phys. Plasmas 24 092701
[25] Sanford T W L, Allshouse G O, Marder B M, et al. 1996 Phys. Rev. Lett. 77 5063
[26] Lemke R W, Bailey J E, Chandler G A, et al. 2005 Phys. Plasmas 12 012703
[27] Rochau G A, Bailey J E, Maron J E, et al. 2008 Phys. Rev. Lett. 100 125004
[28] Ding N, Wu J M, Dai Z H, et al. 2010 Acta Phys. Sin. 59 8707 (in Chinese)[丁宁, 邬吉明, 戴自换, 等 2010 59 8707]
[29] Xiao D L, Sun S K, Zhao Y K, et al. 2015 Phys. Plasmas 22 052709
[30] Ding N, Zhang Y, Xiao D L, et al. 2016 Matter Radiat. Extremes 1 135
[31] Xue C, Ding N, Xiao D L, et al. 2016 High Power Laser and Particle Beams 28 125004 (in Chinese)[薛创, 丁宁, 肖德龙, 等 2016 强激光与离子束 28 125004]
计量
- 文章访问数: 6770
- PDF下载量: 170
- 被引次数: 0