Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental optimization in ion source configuration of a miniature electron cyclotron resonance ion thruster

Tang Ming-Jie Yang Juan Jin Yi-Zhou Luo Li-Tao Feng Bing-Bing

Citation:

Experimental optimization in ion source configuration of a miniature electron cyclotron resonance ion thruster

Tang Ming-Jie, Yang Juan, Jin Yi-Zhou, Luo Li-Tao, Feng Bing-Bing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A miniature ion thruster has been proposed in recent years for a small propulsion system applied in space missions such as deep space exploration, precise high-stability attitude and position control. An electron cyclotron resonance (ECR) ion thruster is free from contamination and degradation of electron emission capacity and will offer a potentially longer thruster lifetime than that in the electron bombardment type. The microwave ECR ion source with a 20-mm diameter designed here consists of two annular permanent magnets (SmCo), ring coupling antenna and a grid system including screen and acceleration. For the ion source performance optimization, with a fixed magnetic structure, the antenna position and cavity length in the discharge chamber can be adjusted to strengthen electron ECR heating and increase ion beam extraction. According to the distribution of static magnetic field and the ECR layer measured by Gauss meter, three possible sizes of antenna position (L1) are set; depending on the cut-off characteristics of the discharge chamber and the distribution of microwave electric field calculated by finite element method, six candidate sizes of cavity length (L2) are set. By comparing the difference in plasma discharge and ion beam extraction, the optimal structure of ion source can be obtained. Experimental results show that for a given antenna position, there is a cavity length not too long or too short to extract the maximum ion beam. And the launch of microwave from strong magnetic field near ECR layer is conductive to lossless wave propagation in plasma and highly efficient electron ECR heating. To maintain a plasma in very low power and flow, the size combination of 0.6-mm in L1 and 5-mm in L2 is selected as the preferred structure. The performances of miniature ECR ion source, that is, ion beam current, discharge loss, propellant utilization efficiency, thrust and specific impulse are 5.4 mA, 389 W/A, 15%, 163 μup N and 1051 s, respectively, at an incident power of 2.1 W and argon flow of 14.9 μg/s.
      Corresponding author: Yang Juan, yangjuan@nwpu.edu.cn
    [1]

    Pencil E, Kamhawi H, Arrington L 2004 40m th AIAAFort Lauderdale, Florida, July 11-14, 2004 p2004-3455

    [2]

    Marcuccio S 2003 28m th IEPC Toulouse, France, March 17-21, 2003 p0241-0303

    [3]

    Yashko G J, Griffin G B, Hastings D E 1997 25m th IEPC Cleveland, Ohio, October27-31, 1997 p443-449

    [4]

    Wirz R, Gale M, Mueller J, Marrese C 2004 40m th AIAA Fort Lauderdale, Florida, July 11-14, 2004 p2004-4115

    [5]

    Felli D, Loeb H W, Schartner K H, Weis S, Kirmse D, Meyer B K, Kilinger R, Mueller H, Di Cara D M 2005 29m th IEPC Princeton, New Jersey, October 31-November 4, 2005 p2005-252

    [6]

    Taunay P C R, Bilen S G, Micci M M 2013 33m th IEPC Washington, DC, October 6-10, 2013 p2013-194

    [7]

    Koizumi H, Kuninaka H 2010 J. Propul. Power 26 601

    [8]

    Kuninaka H, Nishiyama K, Funaki I, Yamada T, Shimizu Y, Kawaguchi J 2007 J. Propul. Power 23 544

    [9]

    Kuninaka H, Nishiyama K, Funaki I 2006 IEEE T. Plasma Sci. 34 2125

    [10]

    Kawahara H 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, July4-10, 2015 p2015-b-18-s

    [11]

    Yang J, Shi F, Yang T L, Meng Z Q 2010 Acta Phys. Sin. 59 8701 (in Chinese) [杨涓, 石峰, 杨铁链, 孟志强 2010 59 8701]

    [12]

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901 (in Chinese) [陈茂林, 夏广庆, 毛根旺 2014 63 182901]

    [13]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion Ion and Hall Thrusters (Hoboken: John Wiley and Sons) pp196-198

    [14]

    Lieberman M A, Lichetenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: John Wiley and Sons) p491

    [15]

    Yang J, Shi F, Jin Y Z, Wang Y M, Komurasaki K 2013 Phys. Plasma 20 123505

    [16]

    Yamamoto N, Masui H, Kataharada H, Nakashima H 2006 J. Propul. Power 22 925

    [17]

    Stix T H 1992 Waves in Plasma(New York: Springer-Verlag) pp26-29

  • [1]

    Pencil E, Kamhawi H, Arrington L 2004 40m th AIAAFort Lauderdale, Florida, July 11-14, 2004 p2004-3455

    [2]

    Marcuccio S 2003 28m th IEPC Toulouse, France, March 17-21, 2003 p0241-0303

    [3]

    Yashko G J, Griffin G B, Hastings D E 1997 25m th IEPC Cleveland, Ohio, October27-31, 1997 p443-449

    [4]

    Wirz R, Gale M, Mueller J, Marrese C 2004 40m th AIAA Fort Lauderdale, Florida, July 11-14, 2004 p2004-4115

    [5]

    Felli D, Loeb H W, Schartner K H, Weis S, Kirmse D, Meyer B K, Kilinger R, Mueller H, Di Cara D M 2005 29m th IEPC Princeton, New Jersey, October 31-November 4, 2005 p2005-252

    [6]

    Taunay P C R, Bilen S G, Micci M M 2013 33m th IEPC Washington, DC, October 6-10, 2013 p2013-194

    [7]

    Koizumi H, Kuninaka H 2010 J. Propul. Power 26 601

    [8]

    Kuninaka H, Nishiyama K, Funaki I, Yamada T, Shimizu Y, Kawaguchi J 2007 J. Propul. Power 23 544

    [9]

    Kuninaka H, Nishiyama K, Funaki I 2006 IEEE T. Plasma Sci. 34 2125

    [10]

    Kawahara H 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, July4-10, 2015 p2015-b-18-s

    [11]

    Yang J, Shi F, Yang T L, Meng Z Q 2010 Acta Phys. Sin. 59 8701 (in Chinese) [杨涓, 石峰, 杨铁链, 孟志强 2010 59 8701]

    [12]

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901 (in Chinese) [陈茂林, 夏广庆, 毛根旺 2014 63 182901]

    [13]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion Ion and Hall Thrusters (Hoboken: John Wiley and Sons) pp196-198

    [14]

    Lieberman M A, Lichetenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: John Wiley and Sons) p491

    [15]

    Yang J, Shi F, Jin Y Z, Wang Y M, Komurasaki K 2013 Phys. Plasma 20 123505

    [16]

    Yamamoto N, Masui H, Kataharada H, Nakashima H 2006 J. Propul. Power 22 925

    [17]

    Stix T H 1992 Waves in Plasma(New York: Springer-Verlag) pp26-29

  • [1] Fu Yu-Liang, Zhang Si-Yuan, Yang Jin-Yuan, Sun An-Bang, Wang Ya-Nan. Electron heating mode in magnetic field diffusion region of microwave discharge ion thruster. Acta Physica Sinica, 2024, 73(9): 095203. doi: 10.7498/aps.73.20240017
    [2] Li Xiang-Fu, Zhu Xiao-Lu, Jiang Gang. Plasma screening effect on electron-electron interactions. Acta Physica Sinica, 2023, 72(7): 073102. doi: 10.7498/aps.72.20222339
    [3] Fu Yu-Liang, Yang Juan, Xia Xu, Sun An-Bang. Study on the effect of discharge chamber length on the performance of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [4] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [5] Zou Xiu, Liu Hui-Ping, Zhang Xiao-Nan, Qiu Ming-Hui. Structure of collisional magnetized plasma sheath with non-extensive distribution of electrons. Acta Physica Sinica, 2021, 70(1): 015201. doi: 10.7498/aps.70.20200794
    [6] Zhao Xiao-Yun, Zhang Bing-Kai, Wang Chun-Xiao, Tang Yi-Jia. Effects of q-nonextensive distribution of electrons on secondary electron emission in plasma sheath. Acta Physica Sinica, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [7] Liu Ming-Wei, Gong Shun-Feng, Li Jin, Jiang Chun-Lei, Zhang Yu-Tao, Zhou Bing-Ju. Non-resonant direct laser acceleration in underdense plasma channels. Acta Physica Sinica, 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [8] Wang Lin, Xia Zhi-Xun, Luo Zhen-Bing, Zhou Yan, Zhang Yu. Experimental study on the characteristics of a two-electrode plasma synthetic jet actuator. Acta Physica Sinica, 2014, 63(19): 194702. doi: 10.7498/aps.63.194702
    [9] Gao Zhu-Xiu, Feng Chun-Hua, Yang Xuan-Zong, Huang Jian-Guo, Han Jian-Wei. Research on plasma axial velocity generated by small debris accelerator coaxial gun. Acta Physica Sinica, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [10] Dong Tai-Yuan, Ye Kun-Tao, Liu Wei-Qing. The current status of surface wave plasma source development. Acta Physica Sinica, 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [11] Liu Hui-Ping, Zou Xiu, Zou Bin-Yan, Qiu Ming-Hui. Bohm criterion for an electronegative magnetized plasma sheath. Acta Physica Sinica, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [12] An Zhi-Yong, Li Ying-Hong, Wu Yun, Su Chang-Bing, Song Hui-Min. Electric field simulation of a symmetrical plasma actuator system. Acta Physica Sinica, 2007, 56(8): 4778-4784. doi: 10.7498/aps.56.4778
    [13] Tian Yang-Meng, Wang Cai-Xia, Jiang Ming, Cheng Xin-Lu, Yang Xiang-Dong. State equation of inert plasma. Acta Physica Sinica, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [14] Sheng Zheng-Mao, Wang Yong, Ma Jian, Zheng Si-Bo. Simulation on heating of plasma in a magnetic field with electrostatic wave. Acta Physica Sinica, 2006, 55(3): 1301-1306. doi: 10.7498/aps.55.1301
    [15] Liu Shao-Bin, Zhu Chuan-Xi, Yuan Nai-Chang. FDTD simulation for plasma photonic crystals. Acta Physica Sinica, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [16] Zhang Yong-Hui, Jiang Jin-Sheng, Chang An-Bi. Study of the hollow cathode plasma electron-gun. Acta Physica Sinica, 2003, 52(7): 1676-1681. doi: 10.7498/aps.52.1676
    [17] Tang Chang-Jian, Qian Shang-Jie. . Acta Physica Sinica, 2002, 51(6): 1256-1261. doi: 10.7498/aps.51.1256
    [18] Zhang Jun, Zhang Jie, Chen Qing, Peng Lian-Mao, Cang Yu, Wang Huai-Bin, Zhong Jia-Yong. . Acta Physica Sinica, 2002, 51(8): 1764-1767. doi: 10.7498/aps.51.1764
    [19] Fu Xi-Quan, Liu Cheng-Yi, Guo Hong. . Acta Physica Sinica, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
    [20] HE BIN, CHANG TIE-QIANG, ZHANG JIA-TAI, XU LIN-BAO. INVESTIGATION OF THE LONGITUDINAL MOTION OF ELECTRONS IN THE PLASMAS WITH ULTRA-INTENSE LASER PULSE. Acta Physica Sinica, 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
Metrics
  • Abstract views:  7344
  • PDF Downloads:  255
  • Cited By: 0
Publishing process
  • Received Date:  07 April 2015
  • Accepted Date:  30 June 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map