-
A miniature ion thruster has been proposed in recent years for a small propulsion system applied in space missions such as deep space exploration, precise high-stability attitude and position control. An electron cyclotron resonance (ECR) ion thruster is free from contamination and degradation of electron emission capacity and will offer a potentially longer thruster lifetime than that in the electron bombardment type. The microwave ECR ion source with a 20-mm diameter designed here consists of two annular permanent magnets (SmCo), ring coupling antenna and a grid system including screen and acceleration. For the ion source performance optimization, with a fixed magnetic structure, the antenna position and cavity length in the discharge chamber can be adjusted to strengthen electron ECR heating and increase ion beam extraction. According to the distribution of static magnetic field and the ECR layer measured by Gauss meter, three possible sizes of antenna position (L1) are set; depending on the cut-off characteristics of the discharge chamber and the distribution of microwave electric field calculated by finite element method, six candidate sizes of cavity length (L2) are set. By comparing the difference in plasma discharge and ion beam extraction, the optimal structure of ion source can be obtained. Experimental results show that for a given antenna position, there is a cavity length not too long or too short to extract the maximum ion beam. And the launch of microwave from strong magnetic field near ECR layer is conductive to lossless wave propagation in plasma and highly efficient electron ECR heating. To maintain a plasma in very low power and flow, the size combination of 0.6-mm in L1 and 5-mm in L2 is selected as the preferred structure. The performances of miniature ECR ion source, that is, ion beam current, discharge loss, propellant utilization efficiency, thrust and specific impulse are 5.4 mA, 389 W/A, 15%, 163 μup N and 1051 s, respectively, at an incident power of 2.1 W and argon flow of 14.9 μg/s.
-
Keywords:
- miniature ion thruster /
- electron cyclotron resonance /
- ion source /
- plasma
[1] Pencil E, Kamhawi H, Arrington L 2004 40m th AIAAFort Lauderdale, Florida, July 11-14, 2004 p2004-3455
[2] Marcuccio S 2003 28m th IEPC Toulouse, France, March 17-21, 2003 p0241-0303
[3] Yashko G J, Griffin G B, Hastings D E 1997 25m th IEPC Cleveland, Ohio, October27-31, 1997 p443-449
[4] Wirz R, Gale M, Mueller J, Marrese C 2004 40m th AIAA Fort Lauderdale, Florida, July 11-14, 2004 p2004-4115
[5] Felli D, Loeb H W, Schartner K H, Weis S, Kirmse D, Meyer B K, Kilinger R, Mueller H, Di Cara D M 2005 29m th IEPC Princeton, New Jersey, October 31-November 4, 2005 p2005-252
[6] Taunay P C R, Bilen S G, Micci M M 2013 33m th IEPC Washington, DC, October 6-10, 2013 p2013-194
[7] Koizumi H, Kuninaka H 2010 J. Propul. Power 26 601
[8] Kuninaka H, Nishiyama K, Funaki I, Yamada T, Shimizu Y, Kawaguchi J 2007 J. Propul. Power 23 544
[9] Kuninaka H, Nishiyama K, Funaki I 2006 IEEE T. Plasma Sci. 34 2125
[10] Kawahara H 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, July4-10, 2015 p2015-b-18-s
[11] Yang J, Shi F, Yang T L, Meng Z Q 2010 Acta Phys. Sin. 59 8701 (in Chinese) [杨涓, 石峰, 杨铁链, 孟志强 2010 59 8701]
[12] Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901 (in Chinese) [陈茂林, 夏广庆, 毛根旺 2014 63 182901]
[13] Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion Ion and Hall Thrusters (Hoboken: John Wiley and Sons) pp196-198
[14] Lieberman M A, Lichetenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: John Wiley and Sons) p491
[15] Yang J, Shi F, Jin Y Z, Wang Y M, Komurasaki K 2013 Phys. Plasma 20 123505
[16] Yamamoto N, Masui H, Kataharada H, Nakashima H 2006 J. Propul. Power 22 925
[17] Stix T H 1992 Waves in Plasma(New York: Springer-Verlag) pp26-29
-
[1] Pencil E, Kamhawi H, Arrington L 2004 40m th AIAAFort Lauderdale, Florida, July 11-14, 2004 p2004-3455
[2] Marcuccio S 2003 28m th IEPC Toulouse, France, March 17-21, 2003 p0241-0303
[3] Yashko G J, Griffin G B, Hastings D E 1997 25m th IEPC Cleveland, Ohio, October27-31, 1997 p443-449
[4] Wirz R, Gale M, Mueller J, Marrese C 2004 40m th AIAA Fort Lauderdale, Florida, July 11-14, 2004 p2004-4115
[5] Felli D, Loeb H W, Schartner K H, Weis S, Kirmse D, Meyer B K, Kilinger R, Mueller H, Di Cara D M 2005 29m th IEPC Princeton, New Jersey, October 31-November 4, 2005 p2005-252
[6] Taunay P C R, Bilen S G, Micci M M 2013 33m th IEPC Washington, DC, October 6-10, 2013 p2013-194
[7] Koizumi H, Kuninaka H 2010 J. Propul. Power 26 601
[8] Kuninaka H, Nishiyama K, Funaki I, Yamada T, Shimizu Y, Kawaguchi J 2007 J. Propul. Power 23 544
[9] Kuninaka H, Nishiyama K, Funaki I 2006 IEEE T. Plasma Sci. 34 2125
[10] Kawahara H 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, July4-10, 2015 p2015-b-18-s
[11] Yang J, Shi F, Yang T L, Meng Z Q 2010 Acta Phys. Sin. 59 8701 (in Chinese) [杨涓, 石峰, 杨铁链, 孟志强 2010 59 8701]
[12] Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901 (in Chinese) [陈茂林, 夏广庆, 毛根旺 2014 63 182901]
[13] Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion Ion and Hall Thrusters (Hoboken: John Wiley and Sons) pp196-198
[14] Lieberman M A, Lichetenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: John Wiley and Sons) p491
[15] Yang J, Shi F, Jin Y Z, Wang Y M, Komurasaki K 2013 Phys. Plasma 20 123505
[16] Yamamoto N, Masui H, Kataharada H, Nakashima H 2006 J. Propul. Power 22 925
[17] Stix T H 1992 Waves in Plasma(New York: Springer-Verlag) pp26-29
Catalog
Metrics
- Abstract views: 7344
- PDF Downloads: 255
- Cited By: 0