Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of the time-resolved emission spectra of the ejected plume generated by ultrashort laser ablation of graphite

Feng Pei-Pei Wu Han Zhang Nan

Citation:

Study of the time-resolved emission spectra of the ejected plume generated by ultrashort laser ablation of graphite

Feng Pei-Pei, Wu Han, Zhang Nan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper ultrashort laser pulses with different fluences (18 J/cm2-115 J/cm2) and pulse widths (50 fs-4 ps) are employed to ablate highly oriented pyrolytic graphite in vacuum (4×10-4 Pa). By recording the time-resolved emission spectra of the ablated plume, the ultrafast time evolution of the ablation process is investigated. The Swan bands of C2 radicals, the spectral band near 416 nm which may be assigned to the electronic transition from 1Σu+ to X1Σg+ of C15 clusters, and the emission continuum ranging from 370-700 nm are observed. From the recorded time-resolved emission spectra of the ablated plume, it is seen that at larger time delays only the emission continuum is observed. The decay process of the emission continuum of the plume generated by 50 fs, 115 J/cm2 laser pulses can be divided into a fast decreasing stage (before 20 ns time delay) and a slow decreasing stage (after 20 ns time delay), indicating that the emission continuum may come from two different compositions. During the fast decreasing process, the bremsstrahlung of the ablation-generated carbon plasma contributes to the major part of the continuum; while during the slow decreasing process, the thermal radiation of carbon clusters generated at a later stage of ablation mainly contributes to the continuum. In addition, the existence time of the continuum generated by 50 fs laser pulses increases with the decrease of laser fluence, indicating that laser pulses with lower fluences can generate more carbon clusters at later stages of ablation. It is also found that for the 50 fs pulses, when the laser fluence increases at the early stage of ablation, the quantities of carbon plasma and excited C2 radicals in the plume increase significantly, but the quantity of excited C15 radicals with larger mass only increases slightly. Therefore the laser fluence has a great impact on the concentrations of different compositions in the ejected plume, implying that different material removal mechanisms exist for ablation induced by laser pulses with different laser fluences. Finally, pulse width plays an important role in the time evolution manner of the emission continuum. As the laser pulse width increases, the two-stage decay process of the emission continuum gradually changes into one-stage process, indicating that the existence time intervals of carbon plasma and carbon clusters overlap each other for longer laser pulse width. And the whole evolution process of the emission continuum induced by 4 ps laser pulses is much slower than that induced by 50 fs laser pulses. Longer laser pulse width also causes the decrease of the spectral intensity of C2 radicals, and thus higher laser intensity favors the generation of excited C2 radicals.
      Corresponding author: Zhang Nan, zhangn@nankai.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61137001, 11274185, 11004111), and the Open Research Fund of Key Laboratory of High Performance Complex Manufacturing, Central South University, China (Grant No. Kfkt2013-08).
    [1]

    Peng N, Huo Y, Zhou K, Jia X, Pan J, Sun Z, Jia T 2013 Acta Phys. Sin. 62 094201 (in Chinese) [彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿 2013 62 094201]

    [2]

    Hu A, Rybachuk M, Lu Q B, Duley W W 2007 Appl. Phys. Lett. 91 131906

    [3]

    Lorazo P, Lewis L J, Meunier M 2006 Phys. Rev. B 73 134108

    [4]

    Wu H, Zhang N, Zhu X 2014 Appl. Surf. Sci. 317 167

    [5]

    Feng P, Zhang N, Wu H, Zhu X 2015 Opt. Lett. 40 17

    [6]

    Wu Z, Zhu X, Zhang N 2011 J. Appl. Phys. 109 053113

    [7]

    Loir A S, Garrelie F, Donnet C, Belin M, Forest B, Rogemond F, Laporte P 2004 Thin Solid Films 453-454 531

    [8]

    Qian L, Wang Y, Liu L, Fan S 2011 Acta Phys. Sin. 60 028801 (in Chinese) [潜力, 王昱权, 刘亮, 范守善 2011 60 028801]

    [9]

    Yoo E J, Okata T, Akita T, Kohyama M, Nakamura J, Honma I 2009 Nano Lett. 9 2255

    [10]

    Yan A, Lau B W, Weissman B S, Kulaots I, Yang N Y C, Kane A B, Hurt R 2006 Adv. Mater. 18 2373

    [11]

    Puretzky A A, Schittenhelm H, Fan X, Lance M J, Allard Jr. L F, Geohegan D B 2002 Phys. Rev. B 65 245425

    [12]

    Cappelli E, Orlando S, Morandi V, Servidori M, Scilletta C 2007 J. Phys. 59 616

    [13]

    Jin Z, Zhao L, Peng H, Zhou C, Zhang B, Chen B, Chen Y, Li M 2005 Acta Phys. Sin. 54 4294 (in Chinese) [金曾孙, 赵立新, 彭鸿雁, 周传胜, 张冰, 陈宝玲, 陈玉强, 李敏君 2005 54 4294]

    [14]

    Orden A V, Saykally R J 1998 Chem. Rev. 98 2313

    [15]

    Al-Shboul K F, Harilal S S, Hassanein A 2013 J. Appl. Phys. 113 163305

    [16]

    Amoruso S, Ausanio G, Vitiello M, Wang X 2005 Appl. Phys. A 81 981

    [17]

    Fuge G M, Ashfold M N R, Henley S J 2006 J. Appl. Phys. 99 014309

    [18]

    Park H S, Nam S H, Park S M 2005 J. Appl. Phys. 97 113103

    [19]

    Vidal F, Johnston T W, Laville S, Barthelemy O, Chaker M, Le Drogoff B, Margot J, Sabsabi, M 2001 Phys. Rev. Lett. 86 2573

    [20]

    Tanabashi A, Hirao T, Amano T, Bernath P F 2007 Astrophys J. Suppl. Ser. 169 472

    [21]

    Maier J P 1997 Chem. Soc. Rev. 26 21

    [22]

    Naulin B C, Costes M, Dorthe G 1988 Chem. Phys. Lett. 143 496

    [23]

    Zhang N, Wang W, Zhu X, Liu J, Xu K, Huang P, Zhao J, Li R, Wang M 2011 Opt. Express 19 8870

    [24]

    Paltauf G, Dyer P E 2003 Chem. Rev. 103 487

  • [1]

    Peng N, Huo Y, Zhou K, Jia X, Pan J, Sun Z, Jia T 2013 Acta Phys. Sin. 62 094201 (in Chinese) [彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿 2013 62 094201]

    [2]

    Hu A, Rybachuk M, Lu Q B, Duley W W 2007 Appl. Phys. Lett. 91 131906

    [3]

    Lorazo P, Lewis L J, Meunier M 2006 Phys. Rev. B 73 134108

    [4]

    Wu H, Zhang N, Zhu X 2014 Appl. Surf. Sci. 317 167

    [5]

    Feng P, Zhang N, Wu H, Zhu X 2015 Opt. Lett. 40 17

    [6]

    Wu Z, Zhu X, Zhang N 2011 J. Appl. Phys. 109 053113

    [7]

    Loir A S, Garrelie F, Donnet C, Belin M, Forest B, Rogemond F, Laporte P 2004 Thin Solid Films 453-454 531

    [8]

    Qian L, Wang Y, Liu L, Fan S 2011 Acta Phys. Sin. 60 028801 (in Chinese) [潜力, 王昱权, 刘亮, 范守善 2011 60 028801]

    [9]

    Yoo E J, Okata T, Akita T, Kohyama M, Nakamura J, Honma I 2009 Nano Lett. 9 2255

    [10]

    Yan A, Lau B W, Weissman B S, Kulaots I, Yang N Y C, Kane A B, Hurt R 2006 Adv. Mater. 18 2373

    [11]

    Puretzky A A, Schittenhelm H, Fan X, Lance M J, Allard Jr. L F, Geohegan D B 2002 Phys. Rev. B 65 245425

    [12]

    Cappelli E, Orlando S, Morandi V, Servidori M, Scilletta C 2007 J. Phys. 59 616

    [13]

    Jin Z, Zhao L, Peng H, Zhou C, Zhang B, Chen B, Chen Y, Li M 2005 Acta Phys. Sin. 54 4294 (in Chinese) [金曾孙, 赵立新, 彭鸿雁, 周传胜, 张冰, 陈宝玲, 陈玉强, 李敏君 2005 54 4294]

    [14]

    Orden A V, Saykally R J 1998 Chem. Rev. 98 2313

    [15]

    Al-Shboul K F, Harilal S S, Hassanein A 2013 J. Appl. Phys. 113 163305

    [16]

    Amoruso S, Ausanio G, Vitiello M, Wang X 2005 Appl. Phys. A 81 981

    [17]

    Fuge G M, Ashfold M N R, Henley S J 2006 J. Appl. Phys. 99 014309

    [18]

    Park H S, Nam S H, Park S M 2005 J. Appl. Phys. 97 113103

    [19]

    Vidal F, Johnston T W, Laville S, Barthelemy O, Chaker M, Le Drogoff B, Margot J, Sabsabi, M 2001 Phys. Rev. Lett. 86 2573

    [20]

    Tanabashi A, Hirao T, Amano T, Bernath P F 2007 Astrophys J. Suppl. Ser. 169 472

    [21]

    Maier J P 1997 Chem. Soc. Rev. 26 21

    [22]

    Naulin B C, Costes M, Dorthe G 1988 Chem. Phys. Lett. 143 496

    [23]

    Zhang N, Wang W, Zhu X, Liu J, Xu K, Huang P, Zhao J, Li R, Wang M 2011 Opt. Express 19 8870

    [24]

    Paltauf G, Dyer P E 2003 Chem. Rev. 103 487

  • [1] Ding Ming-Song, Liu Qing-Zong, Jiang Tao, Fu Yang-Ao-Xiao, Li Peng, Mei Jie. Influence of surface ablation on plasma and its interaction with electromagnetic field. Acta Physica Sinica, 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [2] Wang Kai, Sun Jing-Ya, Pan Chang-Ji, Wang Fei-Fei, Zhang Ke, Chen Zhi-Cheng. Ultrafast dynamic response and temporal shaping modulation of tungsten disulfide irradiated by femtosecond laser. Acta Physica Sinica, 2021, 70(20): 205201. doi: 10.7498/aps.70.20210737
    [3] Zhang Shi-Jian, Yu Xiao, Zhong Hao-Wen, Liang Guo-Ying, Xu Mo-Fei, Zhang Nan, Ren Jian-Hui, Kuang Shi-Cheng, Yan Sha, Gennady Efimovich Remnev, Le Xiao-Yun. Influence of ablation on energy deposition in polymer material under irradiation of intense pulsed ion beam. Acta Physica Sinica, 2020, 69(11): 115202. doi: 10.7498/aps.69.20200212
    [4] Zhang Jie, Zhong Hao-Wen, Shen Jie, Liang Guo-Ying, Cui Xiao-Jun, Zhang Xiao-Fu, Zhang Gao-Long, Yan Sha, Yu Xiao, Le Xiao-Yun. Characteristics of metal ablation product by intense pulsed ion beam irradiation. Acta Physica Sinica, 2017, 66(5): 055202. doi: 10.7498/aps.66.055202
    [5] Shi Yun-Sheng, Liu Bing-Qi, Yang Xing, Dong Hua-Lai. Characterization and analysis of microscale superlubricity graphite surface. Acta Physica Sinica, 2016, 65(23): 234601. doi: 10.7498/aps.65.234601
    [6] Li Yan-Ru, He Qiu-Xiang, Wang Fang, Xiang Lang, Zhong Jian-Xin, Meng Li-Jun. Dynamical evolution study of metal nanofilms on graphite substrates. Acta Physica Sinica, 2016, 65(3): 036804. doi: 10.7498/aps.65.036804
    [7] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock temperature of femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [8] Li Dong-Hai, Chen Fa-Liang. Microscopic theoretical investigation on propagation and breakdown depth of ultrashort-pulse laser in dielectrics. Acta Physica Sinica, 2011, 60(6): 067804. doi: 10.7498/aps.60.067804
    [9] Huang Liang-Feng, Li Yan-Ling, Ni Mei-Yan, Wang Xian-Long, Zhang Guo-Ren, Zeng Zhi. Lattice dynamics of hydrogen-substituted graphene systems. Acta Physica Sinica, 2009, 58(13): 306-S312. doi: 10.7498/aps.58.306
    [10] Sun Yu-Ping, Liu Ji-Cai, Wang Chuan-Kui. Effect of time-dependent ionization on properties of the ultrashort pulse propagation and optical power limiting in a two-photon absorption molecular medium. Acta Physica Sinica, 2009, 58(6): 3934-3942. doi: 10.7498/aps.58.3934
    [11] Miao Quan, Zhao Peng, Sun Yu-Ping, Liu Ji-Cai, Wang Chuan-Kui. Two-photon area evolution and optical limiting of ultrashort laser pulses in DBASVP molecule media. Acta Physica Sinica, 2009, 58(8): 5455-5461. doi: 10.7498/aps.58.5455
    [12] Li Kun, Xu Miao-Hua, Jin Zhan, Liu Yun-Quan, Wang Zhao-Hua, Ling Wei-Jun, Zhang Jie. Polarization dependence of third-harmonics and spectral modulation properties of supercontinuum radiation from plasmas channels generated by femtosecond laser pulses propagation in air. Acta Physica Sinica, 2007, 56(3): 1439-1442. doi: 10.7498/aps.56.1439
    [13] Liu Ji-Cai, Zhao Ke, Song Yu-Zhi, Wang Chuan-Kui. Dynamical behavior of ultra-short laser pulse in a cascade three-level molecular system. Acta Physica Sinica, 2006, 55(4): 1803-1808. doi: 10.7498/aps.55.1803
    [14] Chen Yong-Jun, Zhao Ru-Guang, Yang Wei-Sheng. Scanning tunneling microscopy studies of alkane and alkanol adsorbed on graphite. Acta Physica Sinica, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [15] Li Hong-Yu, Zhao Ke, Pan Rui-Qin, Sun Yuan-Hong, Wang Chuan-Kui. Dynamical behavior of ultrashort pulse laser in para-nitroaniline molecules. Acta Physica Sinica, 2005, 54(5): 2072-2078. doi: 10.7498/aps.54.2072
    [16] Ge Yu-Cheng, Li Yuan-Jing, Kang Ke-Jun. Direct measurement of the temporal structure of narrow bandwidth femtosecond XUV using ultra-short laser via differential photoelectron energy spectrum. Acta Physica Sinica, 2005, 54(6): 2669-2675. doi: 10.7498/aps.54.2669
    [17] Du You-Wei, Wang Zhi-Ming, Ni Gang, Xing Ding-Yu, Xu Qing-Yu. Huge magnetoresistance effect of highly oriented pyrolytic graphite. Acta Physica Sinica, 2004, 53(4): 1191-1194. doi: 10.7498/aps.53.1191
    [18] Peng Xiao-Yu, Zhang Jie, Jin Zhan, Liang Tian-Jiao, Zhong Jia-Yong, Wu Hui-Chun, Liu Yun-Quan, Wang Zhao-Hua, Chen Zheng-Lin, Sheng Zheng-Ming, Li Yu-Tong, Wei Zhi-Yi. Angular distribution of hot electrons emitted from ethanol droplets irradiated by ultrashort laser pulses. Acta Physica Sinica, 2004, 53(8): 2625-2632. doi: 10.7498/aps.53.2625
    [19] WANG FENG, ZHANG FENG-SHOU, XIAO GUO-QING, ZHU ZHI-YUAN. RESPONSE OF IRRADIATED Na2 BY STRONG ULTRASHORT LASER PULSE. Acta Physica Sinica, 2001, 50(4): 667-673. doi: 10.7498/aps.50.667
    [20] XU SU-JUAN, MEN SHOU-QIANG, WANG BIAO, LU KUN-QUAN. STUDY OF A ELECTRORHEOLOGICAL FLUID:TiO2 COATING GRAPHITE/SILICONE OIL. Acta Physica Sinica, 2000, 49(11): 2176-2179. doi: 10.7498/aps.49.2176
Metrics
  • Abstract views:  5948
  • PDF Downloads:  181
  • Cited By: 0
Publishing process
  • Received Date:  03 May 2015
  • Accepted Date:  07 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map