-
In this paper ultrashort laser pulses with different fluences (18 J/cm2-115 J/cm2) and pulse widths (50 fs-4 ps) are employed to ablate highly oriented pyrolytic graphite in vacuum (4×10-4 Pa). By recording the time-resolved emission spectra of the ablated plume, the ultrafast time evolution of the ablation process is investigated. The Swan bands of C2 radicals, the spectral band near 416 nm which may be assigned to the electronic transition from 1Σu+ to X1Σg+ of C15 clusters, and the emission continuum ranging from 370-700 nm are observed. From the recorded time-resolved emission spectra of the ablated plume, it is seen that at larger time delays only the emission continuum is observed. The decay process of the emission continuum of the plume generated by 50 fs, 115 J/cm2 laser pulses can be divided into a fast decreasing stage (before 20 ns time delay) and a slow decreasing stage (after 20 ns time delay), indicating that the emission continuum may come from two different compositions. During the fast decreasing process, the bremsstrahlung of the ablation-generated carbon plasma contributes to the major part of the continuum; while during the slow decreasing process, the thermal radiation of carbon clusters generated at a later stage of ablation mainly contributes to the continuum. In addition, the existence time of the continuum generated by 50 fs laser pulses increases with the decrease of laser fluence, indicating that laser pulses with lower fluences can generate more carbon clusters at later stages of ablation. It is also found that for the 50 fs pulses, when the laser fluence increases at the early stage of ablation, the quantities of carbon plasma and excited C2 radicals in the plume increase significantly, but the quantity of excited C15 radicals with larger mass only increases slightly. Therefore the laser fluence has a great impact on the concentrations of different compositions in the ejected plume, implying that different material removal mechanisms exist for ablation induced by laser pulses with different laser fluences. Finally, pulse width plays an important role in the time evolution manner of the emission continuum. As the laser pulse width increases, the two-stage decay process of the emission continuum gradually changes into one-stage process, indicating that the existence time intervals of carbon plasma and carbon clusters overlap each other for longer laser pulse width. And the whole evolution process of the emission continuum induced by 4 ps laser pulses is much slower than that induced by 50 fs laser pulses. Longer laser pulse width also causes the decrease of the spectral intensity of C2 radicals, and thus higher laser intensity favors the generation of excited C2 radicals.
-
Keywords:
- ultrashort pulse laser /
- ablation /
- graphite /
- time-resolved emission spectrum
[1] Peng N, Huo Y, Zhou K, Jia X, Pan J, Sun Z, Jia T 2013 Acta Phys. Sin. 62 094201 (in Chinese) [彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿 2013 62 094201]
[2] Hu A, Rybachuk M, Lu Q B, Duley W W 2007 Appl. Phys. Lett. 91 131906
[3] Lorazo P, Lewis L J, Meunier M 2006 Phys. Rev. B 73 134108
[4] Wu H, Zhang N, Zhu X 2014 Appl. Surf. Sci. 317 167
[5] Feng P, Zhang N, Wu H, Zhu X 2015 Opt. Lett. 40 17
[6] Wu Z, Zhu X, Zhang N 2011 J. Appl. Phys. 109 053113
[7] Loir A S, Garrelie F, Donnet C, Belin M, Forest B, Rogemond F, Laporte P 2004 Thin Solid Films 453-454 531
[8] Qian L, Wang Y, Liu L, Fan S 2011 Acta Phys. Sin. 60 028801 (in Chinese) [潜力, 王昱权, 刘亮, 范守善 2011 60 028801]
[9] Yoo E J, Okata T, Akita T, Kohyama M, Nakamura J, Honma I 2009 Nano Lett. 9 2255
[10] Yan A, Lau B W, Weissman B S, Kulaots I, Yang N Y C, Kane A B, Hurt R 2006 Adv. Mater. 18 2373
[11] Puretzky A A, Schittenhelm H, Fan X, Lance M J, Allard Jr. L F, Geohegan D B 2002 Phys. Rev. B 65 245425
[12] Cappelli E, Orlando S, Morandi V, Servidori M, Scilletta C 2007 J. Phys. 59 616
[13] Jin Z, Zhao L, Peng H, Zhou C, Zhang B, Chen B, Chen Y, Li M 2005 Acta Phys. Sin. 54 4294 (in Chinese) [金曾孙, 赵立新, 彭鸿雁, 周传胜, 张冰, 陈宝玲, 陈玉强, 李敏君 2005 54 4294]
[14] Orden A V, Saykally R J 1998 Chem. Rev. 98 2313
[15] Al-Shboul K F, Harilal S S, Hassanein A 2013 J. Appl. Phys. 113 163305
[16] Amoruso S, Ausanio G, Vitiello M, Wang X 2005 Appl. Phys. A 81 981
[17] Fuge G M, Ashfold M N R, Henley S J 2006 J. Appl. Phys. 99 014309
[18] Park H S, Nam S H, Park S M 2005 J. Appl. Phys. 97 113103
[19] Vidal F, Johnston T W, Laville S, Barthelemy O, Chaker M, Le Drogoff B, Margot J, Sabsabi, M 2001 Phys. Rev. Lett. 86 2573
[20] Tanabashi A, Hirao T, Amano T, Bernath P F 2007 Astrophys J. Suppl. Ser. 169 472
[21] Maier J P 1997 Chem. Soc. Rev. 26 21
[22] Naulin B C, Costes M, Dorthe G 1988 Chem. Phys. Lett. 143 496
[23] Zhang N, Wang W, Zhu X, Liu J, Xu K, Huang P, Zhao J, Li R, Wang M 2011 Opt. Express 19 8870
[24] Paltauf G, Dyer P E 2003 Chem. Rev. 103 487
-
[1] Peng N, Huo Y, Zhou K, Jia X, Pan J, Sun Z, Jia T 2013 Acta Phys. Sin. 62 094201 (in Chinese) [彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿 2013 62 094201]
[2] Hu A, Rybachuk M, Lu Q B, Duley W W 2007 Appl. Phys. Lett. 91 131906
[3] Lorazo P, Lewis L J, Meunier M 2006 Phys. Rev. B 73 134108
[4] Wu H, Zhang N, Zhu X 2014 Appl. Surf. Sci. 317 167
[5] Feng P, Zhang N, Wu H, Zhu X 2015 Opt. Lett. 40 17
[6] Wu Z, Zhu X, Zhang N 2011 J. Appl. Phys. 109 053113
[7] Loir A S, Garrelie F, Donnet C, Belin M, Forest B, Rogemond F, Laporte P 2004 Thin Solid Films 453-454 531
[8] Qian L, Wang Y, Liu L, Fan S 2011 Acta Phys. Sin. 60 028801 (in Chinese) [潜力, 王昱权, 刘亮, 范守善 2011 60 028801]
[9] Yoo E J, Okata T, Akita T, Kohyama M, Nakamura J, Honma I 2009 Nano Lett. 9 2255
[10] Yan A, Lau B W, Weissman B S, Kulaots I, Yang N Y C, Kane A B, Hurt R 2006 Adv. Mater. 18 2373
[11] Puretzky A A, Schittenhelm H, Fan X, Lance M J, Allard Jr. L F, Geohegan D B 2002 Phys. Rev. B 65 245425
[12] Cappelli E, Orlando S, Morandi V, Servidori M, Scilletta C 2007 J. Phys. 59 616
[13] Jin Z, Zhao L, Peng H, Zhou C, Zhang B, Chen B, Chen Y, Li M 2005 Acta Phys. Sin. 54 4294 (in Chinese) [金曾孙, 赵立新, 彭鸿雁, 周传胜, 张冰, 陈宝玲, 陈玉强, 李敏君 2005 54 4294]
[14] Orden A V, Saykally R J 1998 Chem. Rev. 98 2313
[15] Al-Shboul K F, Harilal S S, Hassanein A 2013 J. Appl. Phys. 113 163305
[16] Amoruso S, Ausanio G, Vitiello M, Wang X 2005 Appl. Phys. A 81 981
[17] Fuge G M, Ashfold M N R, Henley S J 2006 J. Appl. Phys. 99 014309
[18] Park H S, Nam S H, Park S M 2005 J. Appl. Phys. 97 113103
[19] Vidal F, Johnston T W, Laville S, Barthelemy O, Chaker M, Le Drogoff B, Margot J, Sabsabi, M 2001 Phys. Rev. Lett. 86 2573
[20] Tanabashi A, Hirao T, Amano T, Bernath P F 2007 Astrophys J. Suppl. Ser. 169 472
[21] Maier J P 1997 Chem. Soc. Rev. 26 21
[22] Naulin B C, Costes M, Dorthe G 1988 Chem. Phys. Lett. 143 496
[23] Zhang N, Wang W, Zhu X, Liu J, Xu K, Huang P, Zhao J, Li R, Wang M 2011 Opt. Express 19 8870
[24] Paltauf G, Dyer P E 2003 Chem. Rev. 103 487
Catalog
Metrics
- Abstract views: 5948
- PDF Downloads: 181
- Cited By: 0