-
GaN-based light-emitting diode (LED) thin films grown on Si(111) substrates are successfully detached and transferred to copper and silicon submounts, and then become 40mil high power vertical structure LED chips. Electroluminescence properties of the two kinds of chips with the same expitaxial structure are investigated at different forward current densities and ambient temperatures. The obtained results are as follows. 1) at the same temperature, the EL peak wavelength of the chip with copper submount is longer than that of the chip with silicon submount. Under 13 K, the EL peak wavelength of the chip with copper submount is about 6 nm longer than that of chip with silicon submount as the driving current increases from 0.01 mA to 400 mA. While under 300 K, the difference in EL peak wavelength between the two kinds of chips at 0.01 mA is only about 3 nm; as the current increases to 400 mA, the difference will tend to zero and the spectra will coincide. 2) At the same current density, as the temperature increases from 13 K to 320 K, the EL peak wavelengths of the two kinds of chips are S-shaped, and the spectra tend to coincide. 3)When the temperature is below 100 K, the current density droop effect of the chips with copper submount is more abvious than that of chips with silicon submount, while above 100 K, the results are just inverse. Perhaps, it is due to the fact that the differences in thermal expansion coefficient and thermal conductivity between the two kinds of submounts lead to the diffrent EL properties.
[1] Hua S K, James I J E 2014 Phys. Status Solidi C 11 621
[2] Koji O, Takahide O, Naoki S, Yoshio H, Masahito Y, Hiroshi A 2014 Phys. Status Solidi C 11 722
[3] Wang W K, Huang S Y, Huang S H, Wen K S, Wuu D S, Horng R H 2006 Appl. Phys. Lett. 88 181113
[4] Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S, Krames M R 2006 Appl. Phys. Lett. 89 071109
[5] Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamuraa S 2004 Appl. Phys. Lett. 95 3916
[6] Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F Y 2005 J. Cryst. Growth 285 312
[7] Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 莫春兰 2008 57 3176]
[8] Wu M, Zhang B S, Chen J, Liu J P, Shen X M, Zhao D G, Zhang J C, Wang J F, Li N, Jin R Q, Zhu J J, H. Yang 2004 J. Cryst. Growth 260 331
[9] Wael Tawfika Z, Juhui S, Jung J L, Jun S H, Sang W R, Hee S C, Bengso R, June K L 2013 Appl. Surf. Sci. 283 727
[10] Xiong C B, Jiang F Y, Fang W Q, Wang L, Liu H C, Mo C L 2006 SCI. China Ser. E 36 733 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 刘和初, 莫春兰 2006 中国科学 36 733]
[11] Xiao Z H, Zhang M, Xiong C B, Jiang F Y, Wang G X, Xiong Y J, Wang Y M 2010 J. Synth. Cryst. 39 895 (in Chinese) [肖宗湖, 张萌, 熊传兵, 江风益, 王光绪, 熊贻婧, 汪延明 2010 人工晶体学报 39 895]
[12] Hori A, Yasunaga D, Satake A, K. Fujiwara 2001 Physica B 308–310 1193
[13] Jiunn-Chyi L, Ya-Fen W, Yi-Ping W, Tzer-En N 2008 J. Cryst. Growth 310 5143
[14] Wu Y F, Hsu H P, Liu T Y 2012 Solid-State Electron. 68 63
[15] Lancefielda D, Crawforda A, Beaumontb B, Gibartb P, Heukenc M, M. Di Forte-Poissond 2001 Mater. Sci. Eng. B 82 241
[16] Giovanni V, Davide S, Matteo M, francesco B, Michele G, Gaudenzio M, Enrico Z 2013 Appl. Phys. Lett. 114 071101
[17] Wanga C H, Kea C C, Chiua C H, Lia J C, Kuoa H C, Lua T C, Wanga S C 2011 J. Cryst. Growth 315 242
[18] Li Y L, Huang Y R, Lai Y H 2007 Appl. Phys. Lett. 91 181113
[19] Hader J, Moloney J V, S. W. Koch 2011 Appl. Phys. Lett. 99 181127
-
[1] Hua S K, James I J E 2014 Phys. Status Solidi C 11 621
[2] Koji O, Takahide O, Naoki S, Yoshio H, Masahito Y, Hiroshi A 2014 Phys. Status Solidi C 11 722
[3] Wang W K, Huang S Y, Huang S H, Wen K S, Wuu D S, Horng R H 2006 Appl. Phys. Lett. 88 181113
[4] Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S, Krames M R 2006 Appl. Phys. Lett. 89 071109
[5] Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamuraa S 2004 Appl. Phys. Lett. 95 3916
[6] Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F Y 2005 J. Cryst. Growth 285 312
[7] Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 莫春兰 2008 57 3176]
[8] Wu M, Zhang B S, Chen J, Liu J P, Shen X M, Zhao D G, Zhang J C, Wang J F, Li N, Jin R Q, Zhu J J, H. Yang 2004 J. Cryst. Growth 260 331
[9] Wael Tawfika Z, Juhui S, Jung J L, Jun S H, Sang W R, Hee S C, Bengso R, June K L 2013 Appl. Surf. Sci. 283 727
[10] Xiong C B, Jiang F Y, Fang W Q, Wang L, Liu H C, Mo C L 2006 SCI. China Ser. E 36 733 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 刘和初, 莫春兰 2006 中国科学 36 733]
[11] Xiao Z H, Zhang M, Xiong C B, Jiang F Y, Wang G X, Xiong Y J, Wang Y M 2010 J. Synth. Cryst. 39 895 (in Chinese) [肖宗湖, 张萌, 熊传兵, 江风益, 王光绪, 熊贻婧, 汪延明 2010 人工晶体学报 39 895]
[12] Hori A, Yasunaga D, Satake A, K. Fujiwara 2001 Physica B 308–310 1193
[13] Jiunn-Chyi L, Ya-Fen W, Yi-Ping W, Tzer-En N 2008 J. Cryst. Growth 310 5143
[14] Wu Y F, Hsu H P, Liu T Y 2012 Solid-State Electron. 68 63
[15] Lancefielda D, Crawforda A, Beaumontb B, Gibartb P, Heukenc M, M. Di Forte-Poissond 2001 Mater. Sci. Eng. B 82 241
[16] Giovanni V, Davide S, Matteo M, francesco B, Michele G, Gaudenzio M, Enrico Z 2013 Appl. Phys. Lett. 114 071101
[17] Wanga C H, Kea C C, Chiua C H, Lia J C, Kuoa H C, Lua T C, Wanga S C 2011 J. Cryst. Growth 315 242
[18] Li Y L, Huang Y R, Lai Y H 2007 Appl. Phys. Lett. 91 181113
[19] Hader J, Moloney J V, S. W. Koch 2011 Appl. Phys. Lett. 99 181127
Catalog
Metrics
- Abstract views: 6416
- PDF Downloads: 341
- Cited By: 0