Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Strain modulation effect of superlattice interlayer on InGaN/GaN multiple quantum well

Cao Wen-Yu Zhang Ya-Ting Wei Yan-Feng Zhu Li-Juan Xu Ke Yan Jia-Sheng Zhou Shu-Xing Hu Xiao-Dong

Citation:

Strain modulation effect of superlattice interlayer on InGaN/GaN multiple quantum well

Cao Wen-Yu, Zhang Ya-Ting, Wei Yan-Feng, Zhu Li-Juan, Xu Ke, Yan Jia-Sheng, Zhou Shu-Xing, Hu Xiao-Dong
PDF
HTML
Get Citation
  • The strong piezoelectric field in InGaN/GaN heterostructure quantum wells severely reduces the light emission efficiency of multiple quantum well (MQW) structures. To address this issue, a strain modulation interlayer is commonly used to mitigate the piezoelectric polarization field and improve the luminescence performance of the devices. To investigate the influence and mechanism of strain modulation in the InGaN/GaN superlattice (SL), epitaxial wafers with an n-type InGaN/GaN SL interlayer sample, and their corresponding control samples are prepared. The measured temperature-dependent photoluminescence (PL) spectra of the epitaxial wafers, show that the introduction of an SL interlayer leads to a shorter-wavelength emission and enhancement of internal quantum efficiency. As the temperature increases, a blue shift of the PL peak is observed. However, for the sample with an SL interlayer, the blue shift of the PL peak with temperature increasing is relatively small. Electroluminescence (EL) experiments indicate that the introduction of an SL interlayer significantly increases the integrated intensity of the EL peak and reduces its full width at half maximum. These phenomena collectively indicate that the incorporation of a superlattice interlayer can partly suppress the quantum-confined Stark effect (QCSE) that affects the light emission efficiency. Theoretical calculations show that the introduction of a superlattice strain layer before growing an active multiple quantum well can weaken the polarization-induced built-in electric field in the active quantum well, reduce the tilt of the energy band in the multiple quantum well active region, increase the overlap of electron and hole wave functions, enhance the emission probability, shorten the radiative recombination lifetime, and promote competition between radiative recombination and non-radiative recombination, thereby achieving higher recombination efficiency and improving light emission intensity. This study provides experimental and theoretical evidence that the strain modulation SL interlayer can effectively improve the device performance and offer guidance for optimizing the structural design of devices.
      Corresponding author: Zhou Shu-Xing, sxzhou@hbuas.edu.cn
    • Funds: Project supported by the Research Program of Department of Education of Hubei Province, China (Grant No. Q20222607), the Basic Research Science and Technology Plan of Xiangyang City, China (Grant No. 2022ABH006045), the Open Fund of Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration (Wuhan University), China (Grant No. EMPI2023009), the Teaching Research Project of Hubei University of Arts and Science, China (Grant No. JY2023017), and the Doctoral Research Staring Foundation Project of Hubei University of Arts and Science, China (Grant No. 2020170367).
    [1]

    Han D, Kim J, Shin D, Shim J 2023 Opt. Express 31 15779Google Scholar

    [2]

    Jeong H, Jeong H, Oh H, Hong C, Suh E, Lerondel G, Jeong M 2015 Sci. Rep. 5 9373Google Scholar

    [3]

    Zhou S, Wan Z, Lei Y, Tang B, Tao G, Du P, Zhao X 2022 Opt. Lett. 47 1291Google Scholar

    [4]

    Wu Y, Xiao Y, Navid I, Sun K, Malhotra Y, Wang P, Wang D, Xu Y, Pandey A, Reddeppa M, Shin W, Liu J, Min J, Mi Z 2022 Light Sci. Appl. 11 294Google Scholar

    [5]

    Das S, Lenka T, Talukdar F, Sadaf S, Velpula R, Nguyen H 2022 Appl. Opt. 61 8951Google Scholar

    [6]

    Cho L, Lee B, Lee K, Kim J, Ryu M 2021 J. Nanosci. Nanotechnol. 21 5648Google Scholar

    [7]

    Hu H, Zhou S, Wan H, Liu X, Li N, Xu H 2019 Sci. Rep. 9 3447Google Scholar

    [8]

    Li X, Liu J, Su X, Huang S, Tian A, Zhou W, Jiang L, Ikeda M, Yang H 2021 Materials (Basel, Switzerland) 14 1877Google Scholar

    [9]

    Cai J X, Sun H Q, Zheng H, Zhang P J, Guo Z Y 2014 Chin. Phys. B 23 58502Google Scholar

    [10]

    邢艳辉, 邓军, 韩军, 李建军, 沈光池 2009 58 590Google Scholar

    Xing Y H, Deng J, Han J, Li J J, Shen G C 2009 Acta Phys. Sin. 58 590Google Scholar

    [11]

    Shi J L, Shin Y C, Kim K C, Kim E H, Yun M S, Moon Y, Hwang S M, Kim T G 2008 J. Cryst. Growth 311 103Google Scholar

    [12]

    齐维靖, 张萌, 潘拴, 王小兰, 张建立, 江风益 2016 65 077801Google Scholar

    Qi W J, Zhang M, Pan S, Wang X L, Zhang J L, Jiang F Y 2016 Acta Phys. Sin. 65 077801Google Scholar

    [13]

    Cui S, Tao G, Gong L, Zhao X, Zhou S 2022 Materials (Basel, Switzerland) 15 8649Google Scholar

    [14]

    Liu L, Wang L, Li D, Liu N Y, Li L, Cao W Y, Yang W, Wan C H, Chen W H, Du W M, Hu X D, Feng Z C 2011 J. Appl. Phys. 109 073106Google Scholar

    [15]

    Chen C, Hsieh C, Liao C, Chung W, Chen H, Cao W, Chang W, Chen H, Yao Y, Ting S, Kiang Y, Yang C, Hu X 2012 Opt. Express 20 11321Google Scholar

    [16]

    Kuroda T, Tackeuchi A, Sota T 2000 Appl. Phys. Lett. 76 3753Google Scholar

    [17]

    Akasaka T, Gotoh H, Saito T, Makimoto T 2004 Appl. Phys. Lett. 85 3089Google Scholar

    [18]

    Kumano H, Hoshi K, Tanaka S, Suemune I, Shen X Q, Riblet P, Ramvall P, Aoyagi Y 1999 Appl. Phys. Lett. 75 2879Google Scholar

    [19]

    Ridley B K, Schaff W J, Eastman L F 2003 J. Appl. Phys. 94 3972Google Scholar

    [20]

    Sze S M, Ng K K 1981 Physics of Semiconductor Devices (New York: Wiley) p45

    [21]

    Hsu L, Walukiewicz W 1998 Appl. Phys. Lett. 73 339Google Scholar

    [22]

    Fiorentini V, Bernardini F, Ambacher O 2002 Appl. Phys. Lett. 80 1204Google Scholar

    [23]

    Chuang S L 1995 Physics of Optoelectronic Devices (New York: Wiley) p560

    [24]

    Zhang H, Miller E J, Yu E T, Poblenz C, Speck J S 2004 Appl. Phys. Lett. 84 4644Google Scholar

    [25]

    Renner F, Kiesel P, Döhler G H, Kneissl M, Van de Walle C G, Johnson N M 2002 Appl. Phys. Lett. 81 490Google Scholar

    [26]

    Braun W, Dowd P, Guo C Z, Chen S L, Ryu C M, Koelle U, Johnson S R, Zhang Y H, Tomm J W, Elsässer T, Smith D J 2000 J. Appl. Phys. 88 3004Google Scholar

  • 图 1  器件外延结构示意图 (a) 传统MQW结构; (b) 超晶格应变层MQW结构

    Figure 1.  Schematic diagram of the device epitaxial structure: (a) Traditional MQW structure; (b) MQW structure with a superlattice interlayer.

    图 2  传统MQW结构在不同温度下的光致发光谱. 插图为PL谱积分强度随温度的变化及Arrhenius拟合曲线

    Figure 2.  PL spectra of the traditional MQW structure at different temperatures. The inset shows the temperature dependence of the integrated PL intensity with the best fitting of the Arrhenius plot.

    图 3  超晶格应变层MQW结构在不同温度下的光致发光谱. 插图为PL谱积分强度随温度的变化及Arrhenius拟合曲线

    Figure 3.  PL spectra of the MQW structure with a SL interlayer at different temperatures. The inset shows the temperature dependence of the integrated PL intensity with the best fitting of the Arrhenius plot.

    图 4  两种MQW结构PL谱峰值能量随温度的变化

    Figure 4.  Temperature-dependent variations of PL spectral peak energy for two MQW structures.

    图 5  注入电流为100 mA时两种MQW结构的电致发光谱

    Figure 5.  EL spectra of two MQW structures at injection current of 100 mA.

    图 6  注入电流为100 mA时两种样品的能带结构

    Figure 6.  Energy band diagrams of two samples at injection current of 100 mA.

    图 7  注入电流为100 mA时, MQW结构(a)和超晶格应变层MQW结构(b)五个量子阱中电子空穴波函数空间分布和交叠

    Figure 7.  Electron and hole wave function distributions and overlaps in the five quantum wells of the MQW structure (a) and MQW structure with a SL interlayer (b) at 100 mA.

    表 1  拟合参数α, β, EA1, EA2及内量子效率

    Table 1.  Fitting Parameters of α, β, EA1, and EA2 together with the internal quantum efficiency.

    SampleIQE/%$ \alpha $$ \beta $$ {E_{{\text{A1}}}}{\text{/meV}} $$ {E_{{\text{A2}}}}{\text{/meV}} $
    MQW220.339.285.3647.80
    MQW+SL260.348.232.0533.37
    DownLoad: CSV

    表 2  量子阱中电场强度和波函数交叠积分模拟结果

    Table 2.  Simulation results of the electric field and wave function overlaps in each quantum well.

    MQW Electric field E1/(kV⋅cm–1) Overlap/% MQW+SL
    Electric field E2/(kV⋅cm–1) Overlap/%
    QW1 442.5 83.9 QW1 396.7 89.1
    QW2 467.1 82.7 QW2 410.0 88.7
    QW3 473.0 82.6 QW3 414.3 88.7
    QW4 475.8 82.5 QW4 418.1 88.6
    QW5 484.2 81.2 QW5 425.6 87.8
    DownLoad: CSV
    Baidu
  • [1]

    Han D, Kim J, Shin D, Shim J 2023 Opt. Express 31 15779Google Scholar

    [2]

    Jeong H, Jeong H, Oh H, Hong C, Suh E, Lerondel G, Jeong M 2015 Sci. Rep. 5 9373Google Scholar

    [3]

    Zhou S, Wan Z, Lei Y, Tang B, Tao G, Du P, Zhao X 2022 Opt. Lett. 47 1291Google Scholar

    [4]

    Wu Y, Xiao Y, Navid I, Sun K, Malhotra Y, Wang P, Wang D, Xu Y, Pandey A, Reddeppa M, Shin W, Liu J, Min J, Mi Z 2022 Light Sci. Appl. 11 294Google Scholar

    [5]

    Das S, Lenka T, Talukdar F, Sadaf S, Velpula R, Nguyen H 2022 Appl. Opt. 61 8951Google Scholar

    [6]

    Cho L, Lee B, Lee K, Kim J, Ryu M 2021 J. Nanosci. Nanotechnol. 21 5648Google Scholar

    [7]

    Hu H, Zhou S, Wan H, Liu X, Li N, Xu H 2019 Sci. Rep. 9 3447Google Scholar

    [8]

    Li X, Liu J, Su X, Huang S, Tian A, Zhou W, Jiang L, Ikeda M, Yang H 2021 Materials (Basel, Switzerland) 14 1877Google Scholar

    [9]

    Cai J X, Sun H Q, Zheng H, Zhang P J, Guo Z Y 2014 Chin. Phys. B 23 58502Google Scholar

    [10]

    邢艳辉, 邓军, 韩军, 李建军, 沈光池 2009 58 590Google Scholar

    Xing Y H, Deng J, Han J, Li J J, Shen G C 2009 Acta Phys. Sin. 58 590Google Scholar

    [11]

    Shi J L, Shin Y C, Kim K C, Kim E H, Yun M S, Moon Y, Hwang S M, Kim T G 2008 J. Cryst. Growth 311 103Google Scholar

    [12]

    齐维靖, 张萌, 潘拴, 王小兰, 张建立, 江风益 2016 65 077801Google Scholar

    Qi W J, Zhang M, Pan S, Wang X L, Zhang J L, Jiang F Y 2016 Acta Phys. Sin. 65 077801Google Scholar

    [13]

    Cui S, Tao G, Gong L, Zhao X, Zhou S 2022 Materials (Basel, Switzerland) 15 8649Google Scholar

    [14]

    Liu L, Wang L, Li D, Liu N Y, Li L, Cao W Y, Yang W, Wan C H, Chen W H, Du W M, Hu X D, Feng Z C 2011 J. Appl. Phys. 109 073106Google Scholar

    [15]

    Chen C, Hsieh C, Liao C, Chung W, Chen H, Cao W, Chang W, Chen H, Yao Y, Ting S, Kiang Y, Yang C, Hu X 2012 Opt. Express 20 11321Google Scholar

    [16]

    Kuroda T, Tackeuchi A, Sota T 2000 Appl. Phys. Lett. 76 3753Google Scholar

    [17]

    Akasaka T, Gotoh H, Saito T, Makimoto T 2004 Appl. Phys. Lett. 85 3089Google Scholar

    [18]

    Kumano H, Hoshi K, Tanaka S, Suemune I, Shen X Q, Riblet P, Ramvall P, Aoyagi Y 1999 Appl. Phys. Lett. 75 2879Google Scholar

    [19]

    Ridley B K, Schaff W J, Eastman L F 2003 J. Appl. Phys. 94 3972Google Scholar

    [20]

    Sze S M, Ng K K 1981 Physics of Semiconductor Devices (New York: Wiley) p45

    [21]

    Hsu L, Walukiewicz W 1998 Appl. Phys. Lett. 73 339Google Scholar

    [22]

    Fiorentini V, Bernardini F, Ambacher O 2002 Appl. Phys. Lett. 80 1204Google Scholar

    [23]

    Chuang S L 1995 Physics of Optoelectronic Devices (New York: Wiley) p560

    [24]

    Zhang H, Miller E J, Yu E T, Poblenz C, Speck J S 2004 Appl. Phys. Lett. 84 4644Google Scholar

    [25]

    Renner F, Kiesel P, Döhler G H, Kneissl M, Van de Walle C G, Johnson N M 2002 Appl. Phys. Lett. 81 490Google Scholar

    [26]

    Braun W, Dowd P, Guo C Z, Chen S L, Ryu C M, Koelle U, Johnson S R, Zhang Y H, Tomm J W, Elsässer T, Smith D J 2000 J. Appl. Phys. 88 3004Google Scholar

  • [1] Fang Yu, Wu Xing-Zhi, Chen Yong-Qiang, Yang Jun-Yi, Song Ying-Lin. Study on two-photon induced ultrafast carrier dynamcis in Ge-doped GaN by transient absorption spectroscopy. Acta Physica Sinica, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [2] Qiao Jian-Liang, Xu Yuan, Gao You-Tang, Niu Jun, Chang Ben-Kang. Quantum efficiency for reflection-mode varied doping negative-electron-affinity GaN photocathode. Acta Physica Sinica, 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [3] Luo Xiao-Hua. General solution of Schrödinger equation and electron transition in superlattice multi-quantum well. Acta Physica Sinica, 2014, 63(1): 017302. doi: 10.7498/aps.63.017302
    [4] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [5] Zhang Pan-Jun, Sun Hui-Qing, Guo Zhi-You, Wang Du-Yang, Xie Xiao-Yu, Cai Jin-Xin, Zheng Huan, Xie Nan, Yang Bin. The spectrum-control of dual-wavelength LED with quantum dots planted in quantum wells. Acta Physica Sinica, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [6] Luo Xiao-Hua, He Wei, Wu Mu-Ying, Luo Shi-Yu. Quasi-periodic excitation and dynamic stability for strained superlattice. Acta Physica Sinica, 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [7] Wang Yan-Wen, Wu Hua-Rui. Exciton states and optical properties in zinc-blende GaN/AlGaN quantum dot. Acta Physica Sinica, 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [8] Chen Jun, Fan Guang-Han, Zhang Yun-Yan. The investigation of performance improvement of GaN-based dual-wavelength light-emitting diodes with various thickness of quantum barriers. Acta Physica Sinica, 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [9] Wang Du-Yang, Sun Hui-Qing, Xie Xiao-Yu, Zhang Pan-Jun. Theoretical study of luminance of GaN quantum dots planted in quantum well. Acta Physica Sinica, 2012, 61(22): 227303. doi: 10.7498/aps.61.227303
    [10] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Wang Xiao-Hui, Li Biao, Xu Yuan. Photoemission mechanism of GaN vacuum surface electron source. Acta Physica Sinica, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [11] Zhang Yun-Yan, Fan Guan-Han. Theoretical study of GaN interval layers and quantum well barrier layers of different doping types in dual-wavelength LED. Acta Physica Sinica, 2011, 60(1): 018502. doi: 10.7498/aps.60.018502
    [12] Jin Yu-Zhe, Hu Yi-Pei, Zeng Xiang-Hua, Yang Yi-Jun. Gamma radiation effect on GaN-based blue light-emitting diodes with multi-quantum well. Acta Physica Sinica, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [13] Zhou Mei, Zhao De-Gang. Effect of p-GaN layer thickness on the performance of p-i-n structure GaN ultraviolet photodetectors. Acta Physica Sinica, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [14] Shen Ye, Xing Huai-Zhong, Yu Jian-Guo, Lü Bin, Mao Hui-Bing, Wang Ji-Qing. Curie-temperature modulation by polarization-induced built-in electric fields in Mn δ-doped GaN/AlGaN quantum wells. Acta Physica Sinica, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [15] Meng Kang, Jiang Sen-Lin, Hou Li-Na, Li Chan, Wang Kun, Ding Zhi-Bo, Yao Shu-De. Study of radiation damage in Mg+-implanted GaN. Acta Physica Sinica, 2006, 55(5): 2476-2481. doi: 10.7498/aps.55.2476
    [16] Song Shu-Fang, Chen Wei-De, Xu Zhen-Jia, Xu Xu-Rong. Deep level transient spectroscopy studies of Er and Pr implanted GaN films. Acta Physica Sinica, 2006, 55(3): 1407-1412. doi: 10.7498/aps.55.1407
    [17] Ding Zhi-Bo, Yao Shu-De, Wang Kun, Cheng Kai. Characterization of crystal lattice constant and strain of GaN epilayers with different AlxGa1-xN and AlN buffer layers grown on Si(111). Acta Physica Sinica, 2006, 55(6): 2977-2981. doi: 10.7498/aps.55.2977
    [18] Qin Qi, Yu Nai-Sen, Guo Li-Wei, Wang Yang, Zhu Xue-Liang, Chen Hong, Zhou Jun-Ming. Residual stress in the GaN epitaxial film prepared by in situ SiNx deposition. Acta Physica Sinica, 2005, 54(11): 5450-5454. doi: 10.7498/aps.54.5450
    [19] Li Pei-Xian, Hao Yue, Fan Long, Zhang Jin-Cheng, Zhang Jin-Feng, Zhang Xiao-Ju. AlGaN/GaN heterojunction wavefunction half analytic model based on quantum distu rbance. Acta Physica Sinica, 2003, 52(12): 2985-2988. doi: 10.7498/aps.52.2985
    [20] WEI JIAN-HUA, XIE SHI-JIE, MEI LIANG-MO. SUPERLATTICE AND MULTI-QUANTUM-WELL PROPERTIES OF MX COMPOUNDS. Acta Physica Sinica, 2000, 49(11): 2254-2260. doi: 10.7498/aps.49.2254
Metrics
  • Abstract views:  1890
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  20 October 2023
  • Accepted Date:  02 January 2024
  • Available Online:  20 January 2024
  • Published Online:  05 April 2024

/

返回文章
返回
Baidu
map