-
采用模拟计算的方法,运用量子点模型对GaN基LED器件中不同尺寸量子点的电致发光光谱进行模拟分析,并对器件结构中电子空穴浓度,辐射复合强度进行了研究.分析结果显示,随着量子点尺寸的增大,量子点发光波长存在红移,当圆柱状量子点半径从1.8 nm增长到13 nm时,波长红移309.6 meV,在量子阱中生长单一尺寸的量子点可以达到不同波长的单色发光器件,而在不同量子阱中生长不同尺寸的量子点可以实现多波长发光,以及单颗LED的白色显示,并通过调节量子点的分布密度达到调节各发光波长强度的目的.结果表明, 量子点分布密度调节之后多波长发光均匀性得到有效改善.A theoretical simulation of electrical and optical characteristics of quantum dot (QD) light-emitting diodes depending on the QD sizes is conducted with APSYS software. The electron and hole concentration in the LED and the radioactive recombination rate are studied. Simulation results show that with the increase of the QD size, the emission wavelength has a red shift. With the radius of QD increasing from 1.8 nm to 13 nm , the red shift of emission wavelength has reaches 309.6 meV. The use of the QDs with different sizes planted in quantum well can achieve full-color display with a single LED. When different quantum wells are planted with different QDs, the LED turns into a muti-wavelength luminescence even white LED. We can improve the intensity of each wavelength by adjusting the surface density of QDs. The luminous uniforming of the muti-wavelength LED can be effective improved by adjusting the QD surface density.
-
Keywords:
- GaN /
- quantum dot /
- size effect /
- muti-wavelength LED
[1] Nakamura S,Senoh M,Nagahama S,Iwasa N,Yamada T,Matsushita T,Sugimoto Y,Kiyoku H 1996 Appl. Phys. Lett. 69 3034
[2] El-Masry N A,Piner E L,Liu S X,Bedair S M 1998 Appl. Phys. Lett. 72 40
[3] Narukawa Y, Kawakami Y, Funato M, Fujita S, Fujita S, Nakamura S 1997 Appl. Phys. Lett. 70 981
[4] Weisbuch C, Nagle J 1990 Science and Engineering of 1D and 0D Semiconductor Systems (New York: Plenum Press) p319
[5] Xia C S, Hu D W, Wang C, Li Z F, Chen X S, Lu W, Simon Z M, Li Z Q 2006 Opt. Quantum Electron 38 1077
[6] Li W J, Zhang B, Xu W L, Lu W 2009 Acta Phys. Sin. 58 3421 (in Chinese) [李为军, 张波, 徐文兰, 陆卫 2009 58 3421]
[7] Asgari A,Asadzadeh S 2010 J. Phys.: Conf. Ser. 248 012020
[8] Winkelnkemper M,Schliwa A,Bimberg D 2006 Phys. Rev. B 74 155322
[9] Wang Y W,Wu H R 2012 Acta Phys. Sin. 61 106102 (in Chinese) [王艳文, 吴花蕊 2012 61 106102]
[10] Hirayama H, Tanaka S, Ramvall P, Aoyagi Y 1998 Appl. Phys. Lett. 72 1736
[11] Wang J, Nozaki M, Lachab M, Ishikawa Y, Qhalid Fareed R S, Wang T, Hao M, Sakai S 1999 Appl. Phys. Lett. 75 950
[12] Wang T Q, Yu C Y, Liu Y M, Lu P F 2009 Acta Phys. Sin. 58 5618 (in Chinese) [王天琪, 俞重远, 刘玉敏, 芦鹏飞 2009 58 5618]
[13] Yamada M, Narukawa Y, Mukai T 2002 J. Appl. Phys. 41 246
[14] Okamoto K, Saijo S, Kawakami Y, Fujita S G, Terazima M, Mukai T, Shinmiya G, Nakamura S 2001 Proc. SPIE 4278 150
-
[1] Nakamura S,Senoh M,Nagahama S,Iwasa N,Yamada T,Matsushita T,Sugimoto Y,Kiyoku H 1996 Appl. Phys. Lett. 69 3034
[2] El-Masry N A,Piner E L,Liu S X,Bedair S M 1998 Appl. Phys. Lett. 72 40
[3] Narukawa Y, Kawakami Y, Funato M, Fujita S, Fujita S, Nakamura S 1997 Appl. Phys. Lett. 70 981
[4] Weisbuch C, Nagle J 1990 Science and Engineering of 1D and 0D Semiconductor Systems (New York: Plenum Press) p319
[5] Xia C S, Hu D W, Wang C, Li Z F, Chen X S, Lu W, Simon Z M, Li Z Q 2006 Opt. Quantum Electron 38 1077
[6] Li W J, Zhang B, Xu W L, Lu W 2009 Acta Phys. Sin. 58 3421 (in Chinese) [李为军, 张波, 徐文兰, 陆卫 2009 58 3421]
[7] Asgari A,Asadzadeh S 2010 J. Phys.: Conf. Ser. 248 012020
[8] Winkelnkemper M,Schliwa A,Bimberg D 2006 Phys. Rev. B 74 155322
[9] Wang Y W,Wu H R 2012 Acta Phys. Sin. 61 106102 (in Chinese) [王艳文, 吴花蕊 2012 61 106102]
[10] Hirayama H, Tanaka S, Ramvall P, Aoyagi Y 1998 Appl. Phys. Lett. 72 1736
[11] Wang J, Nozaki M, Lachab M, Ishikawa Y, Qhalid Fareed R S, Wang T, Hao M, Sakai S 1999 Appl. Phys. Lett. 75 950
[12] Wang T Q, Yu C Y, Liu Y M, Lu P F 2009 Acta Phys. Sin. 58 5618 (in Chinese) [王天琪, 俞重远, 刘玉敏, 芦鹏飞 2009 58 5618]
[13] Yamada M, Narukawa Y, Mukai T 2002 J. Appl. Phys. 41 246
[14] Okamoto K, Saijo S, Kawakami Y, Fujita S G, Terazima M, Mukai T, Shinmiya G, Nakamura S 2001 Proc. SPIE 4278 150
计量
- 文章访问数: 11567
- PDF下载量: 1118
- 被引次数: 0