搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渐变型量子阱垒层厚度对GaN基双波长发光二极管发光特性调控的研究

陈峻 范广涵 张运炎

引用本文:
Citation:

渐变型量子阱垒层厚度对GaN基双波长发光二极管发光特性调控的研究

陈峻, 范广涵, 张运炎

The investigation of performance improvement of GaN-based dual-wavelength light-emitting diodes with various thickness of quantum barriers

Chen Jun, Fan Guang-Han, Zhang Yun-Yan
PDF
导出引用
  • 采用软件理论分析的方法对渐变型量子阱垒层厚度的InGaN双波长发光二极(LED)的载流子浓度分布、 能带结构、自发发射谱、内量子效率、发光功率及溢出电子流等进行研究.分析结果表明, 增大量子阱垒层厚度会影响空穴在各量子阱的注入情况, 对双波长LED各量子阱中空穴浓度分布的 均衡性及双波长发光光谱的调控起到一定作用,但会导致内量子效率严重下降; 而当以特定的方式从n电极到p电极方向递减渐变量子阱垒层厚度时, 活性层量子阱的溢出电子流 得到有效的控制, 双发光峰强度达到基本一致, 同时芯片的内量子效率下降得到了有效控制, 且具备大驱动电流下较好的发光特性.
    The electrical and optical characteristics of GaN-based dual-wavelength light-emitting diodes (LEDs) with the specific design of various thick barriers are investigated numerically. The simulation results show that the thickness of barrier plays a regulatory role in emission spectrum of the dual-wavelength LED. The internal quantum efficiency droop is improved and the two peaks of spectrum become uniform due to the thickness of barriers gradually decreasing from the n-side to the p-side in a specific way. The balanced distribution of carrier concentration and the enhancement of electron confinement could be the major physical mechanism behind these improvements. It is also shown that the better optical performance is achieved at the large current injection level.
    • 基金项目: 国家自然科学基金(批准号: 61176043); 广东省战略性新兴产业专项资金(批准号: 2010A081002005)和广东省教育部产学研结合计划(批准号: 2010B090400192)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 61176043), the Fund for Strategic and Emerging Industries of Guangdong Province, China (Grant No. 2010A081002005), and the Program of Combination of Production and Research by Guangdong Province and Ministry of Education of China (Grant No. 2010B090400192).
    [1]

    Mathew C, Schmid T, Kim K C, Hitoshi S, Natalie F, Hisashi M, Shuji N, Steven P D, James S S 2007 Jpn.J.Appl.Phys. 46 L126

    [2]

    Zhang G Y, Tong Y Z, Yang Z J, Jin S X, Li J, Gan Z Z 1997 Appl.Phys.Lett. 71 3376

    [3]

    Luo Y, Guo W P, Shao J P, Hu H, Han Y J, Xue S, Wang L, Sun C Z, Hao Z B 2004 Acta Phys.Sin. 53 2720 (in Chinese) [罗毅, 郭文平, 邵嘉平, 胡卉,韩彦军, 薛松, 汪莱, 孙长征, 郝智彪 2004 53 2720]

    [4]

    Zhang G Y, Yang Z J, Tong Y Z, Qin Z X, Hu X D, Chen Z Z, Ding X M, Lu M, Li Z H, Yu T J, Zhang L, Gan Z Z, Zhao Y, Yang C F 2003 Opt. Mater. 23 183

    [5]

    Zhu L H, Cai J F, Li X Y, Deng B, Liu B L 2010 Acta Phys.Sin. 59 4996 (in Chinese) [朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林 2010 59 4996]

    [6]

    Chen J F, Wang W X, Liu S H, Ren Z X 1998 Acta Phys.Sin. 47 1592 (in Chinese) [陈俊芳, 王卫乡, 刘颂豪, 任兆杏 1998 47 1592]

    [7]

    Liu N X, Wang H B, Liu J P, Niu N H, Han J, Sheng G D 2006 Acta Phys. Sin. 55 1424 (in Chinese) [刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩军, 沈光地 2006 55 1424]

    [8]

    Zhu H Y, Huang C H, Zhang G, Wei Y, Huang L X, Chen J,Chen W D, Chen Z Q 2007 Opt.Commun. 270 296

    [9]

    Luo M C, Wang X L, Li J M 2003 J. Cryst. Growth 249 1

    [10]

    Zhu H N, Xu Z, Zhao S L, Zhang F J, Kong C, Yan G, Gong W 2010 Acta Phys. Sin. 59 8093 (in Chinese) [朱海娜, 徐征, 赵谡玲, 张福俊, 孔超, 闫光, 龚伟 2010 59 8093]

    [11]

    Zheng Q H, Yin Y A, Zhu L H, Liu B L 2009 Appl. Phys. Lett. 94 222104

    [12]

    Li M C, Qiu Y X, Liu G J, Wang Y T, Zhang B S, Zhao L C 2009 J. Appl. Phys. 105 094903

    [13]

    Yamada M, Narukawa Y, Mukai T 2002 Jpn. J. Appl. Phys. 41 L246

    [14]

    Damilano B, Grandjean N, Pernot C, Massies J 2001 Jpn. J. Appl. Phys. 40 L918

    [15]

    Zhang Y Y, Fan G H 2011 Acta Phys. Sin. 60 018502 (in Chinese) [张运炎, 范广涵 2011 60 018502]

    [16]

    Zhang Y Y, Fan G H, Zhang Y, Zheng S W 2011 Acta Phys. Sin. 60 028503 (in Chinese) [张运炎, 范广涵, 章勇, 郑树文 2011 60 028503]

    [17]

    Shei S C, Sheu J K, Tsai C M, Lai W C, Lee M L, Kuo C H 2006 Jpn. J. Appl. Phys. 45 2463

    [18]

    David A, Grundmann M J, Kaeding J F, Gardner N F, Mihopoulos T G, Krames M R, Mihopoulos T G, Krames M R 2008 Appl. Phys. Lett. 92 053502

    [19]

    Kim M H, Schubert M F, Qi D, Jong K K, Schubert F, Joachim P 2007 Appl. Phys. Lett. 91 183507

    [20]

    Li Y L, Gessmann T, Schubert E F, Sheu J K 2003 J. Appl. Phys. 94 2167

    [21]

    Simon L Z 1998 Crosslight (Burnaby: Crosslight Software Inc.)

    [22]

    Piprek J, Nakamura S 2002 IEE Proc.-Optoelectron. 149 145

    [23]

    Thahab S M, Hassan H A, Hassan Z 2007 Opt. Express 15 2380

    [24]

    Chuang S L, Chang C S 1997 Semico. Sci. and Technol. 12 252

    [25]

    Chuang S L, Chang C S 1996 Phys. Rev. B 54 2491

    [26]

    Piprek J 2003 Semiconductor Optoelectronic Devices (San Diego: Academic Press) p43

    [27]

    Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675

    [28]

    Goano M, Bellotti E, Ghillino E, Garetto C, Ghione G, Brennan K F 2000 J.Appl.Phys.88 6476

    [29]

    Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 10024

    [30]

    Fiorentini V, Bernardini F, Ambacher O 2002 Appl. Phys. Lett. 80 1204

    [31]

    Kuo Y K, Chang J Y, Tsai M C, Yen S H 2009 Appl. Phys. Lett. 95 011116

    [32]

    Schubert M F, Xu J, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T, Park Y 2008 Appl. Phys. Lett. 93 041102

  • [1]

    Mathew C, Schmid T, Kim K C, Hitoshi S, Natalie F, Hisashi M, Shuji N, Steven P D, James S S 2007 Jpn.J.Appl.Phys. 46 L126

    [2]

    Zhang G Y, Tong Y Z, Yang Z J, Jin S X, Li J, Gan Z Z 1997 Appl.Phys.Lett. 71 3376

    [3]

    Luo Y, Guo W P, Shao J P, Hu H, Han Y J, Xue S, Wang L, Sun C Z, Hao Z B 2004 Acta Phys.Sin. 53 2720 (in Chinese) [罗毅, 郭文平, 邵嘉平, 胡卉,韩彦军, 薛松, 汪莱, 孙长征, 郝智彪 2004 53 2720]

    [4]

    Zhang G Y, Yang Z J, Tong Y Z, Qin Z X, Hu X D, Chen Z Z, Ding X M, Lu M, Li Z H, Yu T J, Zhang L, Gan Z Z, Zhao Y, Yang C F 2003 Opt. Mater. 23 183

    [5]

    Zhu L H, Cai J F, Li X Y, Deng B, Liu B L 2010 Acta Phys.Sin. 59 4996 (in Chinese) [朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林 2010 59 4996]

    [6]

    Chen J F, Wang W X, Liu S H, Ren Z X 1998 Acta Phys.Sin. 47 1592 (in Chinese) [陈俊芳, 王卫乡, 刘颂豪, 任兆杏 1998 47 1592]

    [7]

    Liu N X, Wang H B, Liu J P, Niu N H, Han J, Sheng G D 2006 Acta Phys. Sin. 55 1424 (in Chinese) [刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩军, 沈光地 2006 55 1424]

    [8]

    Zhu H Y, Huang C H, Zhang G, Wei Y, Huang L X, Chen J,Chen W D, Chen Z Q 2007 Opt.Commun. 270 296

    [9]

    Luo M C, Wang X L, Li J M 2003 J. Cryst. Growth 249 1

    [10]

    Zhu H N, Xu Z, Zhao S L, Zhang F J, Kong C, Yan G, Gong W 2010 Acta Phys. Sin. 59 8093 (in Chinese) [朱海娜, 徐征, 赵谡玲, 张福俊, 孔超, 闫光, 龚伟 2010 59 8093]

    [11]

    Zheng Q H, Yin Y A, Zhu L H, Liu B L 2009 Appl. Phys. Lett. 94 222104

    [12]

    Li M C, Qiu Y X, Liu G J, Wang Y T, Zhang B S, Zhao L C 2009 J. Appl. Phys. 105 094903

    [13]

    Yamada M, Narukawa Y, Mukai T 2002 Jpn. J. Appl. Phys. 41 L246

    [14]

    Damilano B, Grandjean N, Pernot C, Massies J 2001 Jpn. J. Appl. Phys. 40 L918

    [15]

    Zhang Y Y, Fan G H 2011 Acta Phys. Sin. 60 018502 (in Chinese) [张运炎, 范广涵 2011 60 018502]

    [16]

    Zhang Y Y, Fan G H, Zhang Y, Zheng S W 2011 Acta Phys. Sin. 60 028503 (in Chinese) [张运炎, 范广涵, 章勇, 郑树文 2011 60 028503]

    [17]

    Shei S C, Sheu J K, Tsai C M, Lai W C, Lee M L, Kuo C H 2006 Jpn. J. Appl. Phys. 45 2463

    [18]

    David A, Grundmann M J, Kaeding J F, Gardner N F, Mihopoulos T G, Krames M R, Mihopoulos T G, Krames M R 2008 Appl. Phys. Lett. 92 053502

    [19]

    Kim M H, Schubert M F, Qi D, Jong K K, Schubert F, Joachim P 2007 Appl. Phys. Lett. 91 183507

    [20]

    Li Y L, Gessmann T, Schubert E F, Sheu J K 2003 J. Appl. Phys. 94 2167

    [21]

    Simon L Z 1998 Crosslight (Burnaby: Crosslight Software Inc.)

    [22]

    Piprek J, Nakamura S 2002 IEE Proc.-Optoelectron. 149 145

    [23]

    Thahab S M, Hassan H A, Hassan Z 2007 Opt. Express 15 2380

    [24]

    Chuang S L, Chang C S 1997 Semico. Sci. and Technol. 12 252

    [25]

    Chuang S L, Chang C S 1996 Phys. Rev. B 54 2491

    [26]

    Piprek J 2003 Semiconductor Optoelectronic Devices (San Diego: Academic Press) p43

    [27]

    Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675

    [28]

    Goano M, Bellotti E, Ghillino E, Garetto C, Ghione G, Brennan K F 2000 J.Appl.Phys.88 6476

    [29]

    Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 10024

    [30]

    Fiorentini V, Bernardini F, Ambacher O 2002 Appl. Phys. Lett. 80 1204

    [31]

    Kuo Y K, Chang J Y, Tsai M C, Yen S H 2009 Appl. Phys. Lett. 95 011116

    [32]

    Schubert M F, Xu J, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T, Park Y 2008 Appl. Phys. Lett. 93 041102

  • [1] 曹文彧, 张雅婷, 魏彦锋, 朱丽娟, 徐可, 颜家圣, 周书星, 胡晓东. 超晶格插入层对InGaN/GaN多量子阱的应变调制作用.  , 2024, 73(7): 077201. doi: 10.7498/aps.73.20231677
    [2] 乔建良, 徐源, 高有堂, 牛军, 常本康. 反射式变掺杂负电子亲和势GaN光电阴极量子效率研究.  , 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [3] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响.  , 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [4] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理.  , 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [5] 王雪松, 冀子武, 王绘凝, 徐明升, 徐现刚, 吕元杰, 冯志红. 关于InGaN/GaN多量子阱结构内量子效率的研究.  , 2014, 63(12): 127801. doi: 10.7498/aps.63.127801
    [6] 黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益. 硅基板和铜基板垂直结构GaN基LED变温变电流发光性能的研究.  , 2014, 63(21): 217806. doi: 10.7498/aps.63.217806
    [7] 陈浩然, 杨林安, 朱樟明, 林志宇, 张进成. 基于AlGaN/GaN共振隧穿二极管的退化现象的研究.  , 2013, 62(21): 217301. doi: 10.7498/aps.62.217301
    [8] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控.  , 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [9] 王度阳, 孙慧卿, 解晓宇, 张盼君. GaN基LED量子阱内量子点发光性质的模拟分析.  , 2012, 61(22): 227303. doi: 10.7498/aps.61.227303
    [10] 张运炎, 范广涵, 章勇, 郑树文. 掺杂GaN间隔层对双波长发光二极管光谱调控作用的研究.  , 2011, 60(2): 028503. doi: 10.7498/aps.60.028503
    [11] 张运炎, 范广涵. 不同掺杂类型的GaN间隔层和量子阱垒层对双波长LED作用的研究.  , 2011, 60(1): 018502. doi: 10.7498/aps.60.018502
    [12] 薛正群, 黄生荣, 张保平, 陈朝. 激光诱导p-GaN掺杂对发光二极管性能改善的分析.  , 2010, 59(2): 1268-1274. doi: 10.7498/aps.59.1268
    [13] 薛正群, 黄生荣, 张保平, 陈朝. GaN基白光发光二极管失效机理分析.  , 2010, 59(7): 5002-5009. doi: 10.7498/aps.59.5002
    [14] 金豫浙, 胡益培, 曾祥华, 杨义军. GaN基多量子阱蓝光LED的γ辐照效应.  , 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [15] 朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林. In组分渐变提高InGaN/GaN多量子阱发光二极管发光性能.  , 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [16] 熊传兵, 江风益, 方文卿, 王 立, 莫春兰. 硅衬底GaN蓝色发光材料转移前后应力变化研究.  , 2008, 57(5): 3176-3181. doi: 10.7498/aps.57.3176
    [17] 张剑铭, 邹德恕, 徐 晨, 顾晓玲, 沈光地. 电极结构优化对大功率GaN基发光二极管性能的影响.  , 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [18] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制.  , 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [19] 宋淑芳, 周生强, 陈维德, 朱建军, 陈长勇, 许振嘉. 掺铒GaN薄膜的背散射/沟道分析和光致发光研究.  , 2003, 52(10): 2558-2562. doi: 10.7498/aps.52.2558
    [20] 李培咸, 郝 跃, 范 隆, 张进城, 张金凤, 张晓菊. 基于量子微扰的AlGaN/GaN异质结波函数半解析求解.  , 2003, 52(12): 2985-2988. doi: 10.7498/aps.52.2985
计量
  • 文章访问数:  6873
  • PDF下载量:  750
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-16
  • 修回日期:  2012-03-04
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map