-
A theoretical simulation of electrical and optical characteristics of quantum dot (QD) light-emitting diodes depending on the QD sizes is conducted with APSYS software. The electron and hole concentration in the LED and the radioactive recombination rate are studied. Simulation results show that with the increase of the QD size, the emission wavelength has a red shift. With the radius of QD increasing from 1.8 nm to 13 nm , the red shift of emission wavelength has reaches 309.6 meV. The use of the QDs with different sizes planted in quantum well can achieve full-color display with a single LED. When different quantum wells are planted with different QDs, the LED turns into a muti-wavelength luminescence even white LED. We can improve the intensity of each wavelength by adjusting the surface density of QDs. The luminous uniforming of the muti-wavelength LED can be effective improved by adjusting the QD surface density.
-
Keywords:
- GaN /
- quantum dot /
- size effect /
- muti-wavelength LED
[1] Nakamura S,Senoh M,Nagahama S,Iwasa N,Yamada T,Matsushita T,Sugimoto Y,Kiyoku H 1996 Appl. Phys. Lett. 69 3034
[2] El-Masry N A,Piner E L,Liu S X,Bedair S M 1998 Appl. Phys. Lett. 72 40
[3] Narukawa Y, Kawakami Y, Funato M, Fujita S, Fujita S, Nakamura S 1997 Appl. Phys. Lett. 70 981
[4] Weisbuch C, Nagle J 1990 Science and Engineering of 1D and 0D Semiconductor Systems (New York: Plenum Press) p319
[5] Xia C S, Hu D W, Wang C, Li Z F, Chen X S, Lu W, Simon Z M, Li Z Q 2006 Opt. Quantum Electron 38 1077
[6] Li W J, Zhang B, Xu W L, Lu W 2009 Acta Phys. Sin. 58 3421 (in Chinese) [李为军, 张波, 徐文兰, 陆卫 2009 58 3421]
[7] Asgari A,Asadzadeh S 2010 J. Phys.: Conf. Ser. 248 012020
[8] Winkelnkemper M,Schliwa A,Bimberg D 2006 Phys. Rev. B 74 155322
[9] Wang Y W,Wu H R 2012 Acta Phys. Sin. 61 106102 (in Chinese) [王艳文, 吴花蕊 2012 61 106102]
[10] Hirayama H, Tanaka S, Ramvall P, Aoyagi Y 1998 Appl. Phys. Lett. 72 1736
[11] Wang J, Nozaki M, Lachab M, Ishikawa Y, Qhalid Fareed R S, Wang T, Hao M, Sakai S 1999 Appl. Phys. Lett. 75 950
[12] Wang T Q, Yu C Y, Liu Y M, Lu P F 2009 Acta Phys. Sin. 58 5618 (in Chinese) [王天琪, 俞重远, 刘玉敏, 芦鹏飞 2009 58 5618]
[13] Yamada M, Narukawa Y, Mukai T 2002 J. Appl. Phys. 41 246
[14] Okamoto K, Saijo S, Kawakami Y, Fujita S G, Terazima M, Mukai T, Shinmiya G, Nakamura S 2001 Proc. SPIE 4278 150
-
[1] Nakamura S,Senoh M,Nagahama S,Iwasa N,Yamada T,Matsushita T,Sugimoto Y,Kiyoku H 1996 Appl. Phys. Lett. 69 3034
[2] El-Masry N A,Piner E L,Liu S X,Bedair S M 1998 Appl. Phys. Lett. 72 40
[3] Narukawa Y, Kawakami Y, Funato M, Fujita S, Fujita S, Nakamura S 1997 Appl. Phys. Lett. 70 981
[4] Weisbuch C, Nagle J 1990 Science and Engineering of 1D and 0D Semiconductor Systems (New York: Plenum Press) p319
[5] Xia C S, Hu D W, Wang C, Li Z F, Chen X S, Lu W, Simon Z M, Li Z Q 2006 Opt. Quantum Electron 38 1077
[6] Li W J, Zhang B, Xu W L, Lu W 2009 Acta Phys. Sin. 58 3421 (in Chinese) [李为军, 张波, 徐文兰, 陆卫 2009 58 3421]
[7] Asgari A,Asadzadeh S 2010 J. Phys.: Conf. Ser. 248 012020
[8] Winkelnkemper M,Schliwa A,Bimberg D 2006 Phys. Rev. B 74 155322
[9] Wang Y W,Wu H R 2012 Acta Phys. Sin. 61 106102 (in Chinese) [王艳文, 吴花蕊 2012 61 106102]
[10] Hirayama H, Tanaka S, Ramvall P, Aoyagi Y 1998 Appl. Phys. Lett. 72 1736
[11] Wang J, Nozaki M, Lachab M, Ishikawa Y, Qhalid Fareed R S, Wang T, Hao M, Sakai S 1999 Appl. Phys. Lett. 75 950
[12] Wang T Q, Yu C Y, Liu Y M, Lu P F 2009 Acta Phys. Sin. 58 5618 (in Chinese) [王天琪, 俞重远, 刘玉敏, 芦鹏飞 2009 58 5618]
[13] Yamada M, Narukawa Y, Mukai T 2002 J. Appl. Phys. 41 246
[14] Okamoto K, Saijo S, Kawakami Y, Fujita S G, Terazima M, Mukai T, Shinmiya G, Nakamura S 2001 Proc. SPIE 4278 150
Catalog
Metrics
- Abstract views: 11595
- PDF Downloads: 1118
- Cited By: 0