-
A nonequilibrium molecular dynamics model combined with quantum correction is presented for characterizing the thermal conductivity of graphene nanoribbons (GNR). Temperature effect on graphene nanoribbon thermal conductivity is revealed based on this model. It is shown that different from the decreasing dependence in classical nonequilibrium molecular dynamics simulations, an “anomaly” is revealed at low temperatures using quantum correction. Besides, the conductivity of GNR shows obvious edge and scale effects: The zigzag GNR have higher thermal conductivity than the zigzag GNR. The whole temperature range of thermal conductivity and the slope of thermal conductivity at low temperatures both show an increasing dependence of width. Boltzmann-Peierls phonon transport equation is used to explain the temperature and scale effects at low temperatures, indicating that the model constructed is suitable for a wide temperature range of accurate calculation for thermal conductivity of different chirality and width. Research provides a possible theoretical and computational basis for heat transfer and dissipation applications of GNR.
-
Keywords:
- graphene nanoribbons /
- thermal conductivity /
- quantum correction /
- nonequilibrium molecular dynamics simulation
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Jin F, Zhang ZH, Wang CZ, Deng XQ, Fan Z Q 2013 Acta Phys. Sin. 62 036103 (in Chinese) [金峰, 张振华, 王成志, 邓小清, 范志强2013 62 036103]
[3] Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红2012 61 248502]
[4] Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, OuYang F P 2012 Chin.Phys. B 21 027102
[5] Deng S X, Liang S D 2012 Chin.Phys. B 21 047306
[6] Shao Q, Liu G, Teweldebrhan D 2008 Appl. Phys. Lett. 92 202108
[7] Cai W W, Moore A L, Zhu Y W, Li X S, Chen S S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645
[8] Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413
[9] Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese)[林琦, 陈余行, 吴建宝, 孔宗敏2011 60 097103]
[10] Zhou B H, Duan Z G, Zhou B L, Zhou G H 2010 Chin. Phys. B 19 037204
[11] Zhang L J, Xia T S 2010 Chin. Phys. B 19 117105
[12] Wei Z Y, Bi K D, Chen Y F 2010 Journal of Southeast University (Natural Science Edition) 40 306 (in Chinese)[魏志勇, 毕可东, 陈云飞2010 东南大学学报40 306]
[13] William J E, Lin H, Pawel K 2010 Appl. Phys. Lett. 96 203112
[14] HanT W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese)[韩同伟, 贺鹏飞2010 59 3408]
[15] Florian M L 1997 J. Chem. Phys. 106 6082
[16] Maiti A, Mahan G D, Pantelides S T 1997 Solid State Communications. 102 517
[17] Lukes J R, Zhong H L 2007 J. Heat Transfer. 129 705
[18] Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730
[19] WangS C, Liang X G, Xu X H, Ohara T 2009 Appl. Phys. 105 014316
[20] Hasegawa H 2009 Phys. Rev. E 80 011126
[21] Evens D J, Holian B L 1985 Chem. Phys. 83 4069
[22] Guo Z G, Zhang D E, Gong X G 2009 Appl. Phys. Lett. 95 163103
[23] Paul P, David E, Raj S 2012 Journal of Heat Transfer. 134 122401
[24] Srivastava G P The Physics of Phonons (IOP, Philadelphia 1990) p99
[25] Vandescuren M, Hermet P, Meunier V, Henrard L, Lambin P 2008 Phys. Rev. B 78 195401
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Jin F, Zhang ZH, Wang CZ, Deng XQ, Fan Z Q 2013 Acta Phys. Sin. 62 036103 (in Chinese) [金峰, 张振华, 王成志, 邓小清, 范志强2013 62 036103]
[3] Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红2012 61 248502]
[4] Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, OuYang F P 2012 Chin.Phys. B 21 027102
[5] Deng S X, Liang S D 2012 Chin.Phys. B 21 047306
[6] Shao Q, Liu G, Teweldebrhan D 2008 Appl. Phys. Lett. 92 202108
[7] Cai W W, Moore A L, Zhu Y W, Li X S, Chen S S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645
[8] Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413
[9] Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese)[林琦, 陈余行, 吴建宝, 孔宗敏2011 60 097103]
[10] Zhou B H, Duan Z G, Zhou B L, Zhou G H 2010 Chin. Phys. B 19 037204
[11] Zhang L J, Xia T S 2010 Chin. Phys. B 19 117105
[12] Wei Z Y, Bi K D, Chen Y F 2010 Journal of Southeast University (Natural Science Edition) 40 306 (in Chinese)[魏志勇, 毕可东, 陈云飞2010 东南大学学报40 306]
[13] William J E, Lin H, Pawel K 2010 Appl. Phys. Lett. 96 203112
[14] HanT W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese)[韩同伟, 贺鹏飞2010 59 3408]
[15] Florian M L 1997 J. Chem. Phys. 106 6082
[16] Maiti A, Mahan G D, Pantelides S T 1997 Solid State Communications. 102 517
[17] Lukes J R, Zhong H L 2007 J. Heat Transfer. 129 705
[18] Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730
[19] WangS C, Liang X G, Xu X H, Ohara T 2009 Appl. Phys. 105 014316
[20] Hasegawa H 2009 Phys. Rev. E 80 011126
[21] Evens D J, Holian B L 1985 Chem. Phys. 83 4069
[22] Guo Z G, Zhang D E, Gong X G 2009 Appl. Phys. Lett. 95 163103
[23] Paul P, David E, Raj S 2012 Journal of Heat Transfer. 134 122401
[24] Srivastava G P The Physics of Phonons (IOP, Philadelphia 1990) p99
[25] Vandescuren M, Hermet P, Meunier V, Henrard L, Lambin P 2008 Phys. Rev. B 78 195401
Catalog
Metrics
- Abstract views: 7805
- PDF Downloads: 1538
- Cited By: 0