-
III-nitride materials have attracted considerable attention in the last decade due to their wide applications in solidstate light devices with their direct wide band-gaps and higher quantum efficiencies. InGaN/GaN multiple quantum well is important active region for light-emitting diode, which can be tuned according to indium composition in the InxGa1-xN alloy system. Owing to difficulty in fabricating bulk materials, GaN thin films are heteroepitaxially grown on latticemismatched and thermal-expansion-mismatched substrates, such as sapphire (Al2O3), Si and SiC, which subsequently results in a mass of threading dislocations and higher residual strains. On the one hand, dislocations and defects existing in GaN epifilms trap the carriers as scattering centers in the radiative recombination process between electrons and holes, and play an important role in drooping the internal quantum efficiency. On the other hand, higher built-in electric field induced by residual strains existing in GaN epifilm could make the emission wavelength red-shifted.It is common knowledge that temperature is one of the important factors in the growth process of epitaxial films, as a result, further research on thermal expansion behaviors is needed. Based on the above analysis, an in-depth study of thermal expansion behavior of wurtzite GaN epitaxial film is of vital importance both in theory and in application.In this study, we investigate the thermal expansion behaviors of wurtzite GaN epitaxial films by using temperaturedependent Raman scattering in a temperature range from 83 K to 503 K. According to the physical implication, Gruneisen parameter is almost a constant (Gruneisen parameters of all phonon modes are in a range between 1 to 2 for GaN) that characterizes the relationship between the phonon shift and the volume of a solid-state material. More importantly, Gruneisen parameter is relatively insensitive to temperature and suitable for building the connection between the phonon shift and thermal expansion coefficient. Therefore, the linear relationship between the phonon shift and temperature is built and utilized to calculate the thermal expansion coefficient according to the physical implication of the Gruneisen parameter. Conclusions can be obtained as follows. (1) The thermal expansion coefficient of GaN epifilm can be calculated in a certain temperature range by measuring the phonon modes of E2 (high), A1 (TO) and E1 (TO) through using temperature-dependent Raman scattering when the corresponding Gruneisen parameters are determined. (2) The calculated thermal expansion coefficients of GaN epifilm are consistent with the theoretical values.Conclusions and methods in this paper provide an effective quantitative analysis method to characterize the thermal expansion behaviors of other III-nitride epitaxial thin films, such as AlN, InN, AlGaN, InGaN, InAlN etc., which can be of benefit to reducing the dislocation density and improving the luminescence efficiency of light emitting diode. Therefore, research on thermal expansion behaviors of epifilms using temperature-dependent Raman scattering has a direction for further studying the latter-mismatch and thermal-expansion-mismatch between the epitaxial film and substrate.
-
Keywords:
- epitaxial-film /
- thermal expansion coefficient /
- Gruneisen parameter /
- temperature-dependent Raman scattering
[1] Akasaki I, Amano H, Itoh K, Koide N, Manabe K 1992 Int. Phys. Conf. Ser. 129 851
[2] Amano H, Sawaki N, Akasaki I, Toyoda Y 1986 Appl. Phys. Lett. 48 353
[3] Nakamura S, Mukai T 1992 Jpn J. Appl. Phys. 31 1457
[4] Xu S R, Hao Y, Zhang J C, Jiang T, Yang L A, Lu X L, Lin Z Y 2013 Nano Lett. 13 3654
[5] Wang D H, Xu T H, Wang R, Luo S J, Yao T Z 2015 Acta Phys. Sin. 64 050701 (in Chinese) [王党会, 许天旱, 王荣, 雒设计, 姚婷珍 2015 64 050701]
[6] Wang D H, Hao Y, Xu S R, Xu T H, Wang D C, Yao T Z, Zhang Y N 2013 J. Alloys Compd. 555 311
[7] Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Wei M, Hu S G, Cao Y R, Zhu Q W, Xu Z H, Gu W P 2009 J. Cryst. Growth 311 3622
[8] Zhao Y, Zhang J C, Xue J S, Xu S R, Zhou X W, Hao Y 2014 Jpn. J. Appl. Phys. 53 110314
[9] Liu M S, Bursill L, Prawer S, Nugent K W, Tong Y Z, Zhang G Y 1999 Appl. Phys. Lett. 74 3125
[10] Dong Y Q, Song J H, Kim H J, Kim T S, Ahn B J, Song J H, Cho I S, Im W T, Moon Y, Hwang S M, Hong S K, Lee S W 2011 J. Appl. Phys. 109 43103
[11] Lazić S, Moreno M, Calleja J M, Trampert A, Ploog K H, Naranjo F B, Fernandez S, Calleja E 2005 Appl. Phys. Lett. 86 61905
[12] Irmer G, Brumme T, Herms M, Wernicke T, Kneissl M, Weyers M 2008 J. Mater. Sci.: Mater. Electron. 19 51
[13] Yan Q, Rinke P, Scheffler M, van de Walle G 2009 Appl. Phys. Lett. 95 2009
[14] Correia M R, Pereira S, Pereira E, Frandon J, Alves E 2003 Appl. Phys. Lett. 83 4761
[15] Giehler M, Ramsteiner M, Waltereit P, Brandt O Plooga K H, Oblohb H 2002 Physica B: Condens Matter 316-317 162
[16] Gmez-Gmez M I, Garca A, de Lima M M, Daudin B, Rizzi A, Denker C, Malindretos J 2011 Ann. Phys. 523 51
[17] James P, Bernard B 2010 Solid-State Physics: Introduction to the Theory (Berlin Heidelberg:Springer-Verlag) p101
[18] Sadao A 2005 Properties of Group-IV, III-V and II-VI Semiconductors (New York: John Wiley Sons Ltd) p83
[19] Song S H, Jiles D C, Snyde J E, et al. 2005 J. Appl.Phys. 97 10M516
[20] Gorczyca I, Christensen N E, Peltzer E L, Rodriguez C O 1995 Phys. Rev. B 51 11936
[21] Li W S, Shen Z X, Feng Z C, Chua S J 2000 J. Appl. Phys. 87 3332
-
[1] Akasaki I, Amano H, Itoh K, Koide N, Manabe K 1992 Int. Phys. Conf. Ser. 129 851
[2] Amano H, Sawaki N, Akasaki I, Toyoda Y 1986 Appl. Phys. Lett. 48 353
[3] Nakamura S, Mukai T 1992 Jpn J. Appl. Phys. 31 1457
[4] Xu S R, Hao Y, Zhang J C, Jiang T, Yang L A, Lu X L, Lin Z Y 2013 Nano Lett. 13 3654
[5] Wang D H, Xu T H, Wang R, Luo S J, Yao T Z 2015 Acta Phys. Sin. 64 050701 (in Chinese) [王党会, 许天旱, 王荣, 雒设计, 姚婷珍 2015 64 050701]
[6] Wang D H, Hao Y, Xu S R, Xu T H, Wang D C, Yao T Z, Zhang Y N 2013 J. Alloys Compd. 555 311
[7] Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Wei M, Hu S G, Cao Y R, Zhu Q W, Xu Z H, Gu W P 2009 J. Cryst. Growth 311 3622
[8] Zhao Y, Zhang J C, Xue J S, Xu S R, Zhou X W, Hao Y 2014 Jpn. J. Appl. Phys. 53 110314
[9] Liu M S, Bursill L, Prawer S, Nugent K W, Tong Y Z, Zhang G Y 1999 Appl. Phys. Lett. 74 3125
[10] Dong Y Q, Song J H, Kim H J, Kim T S, Ahn B J, Song J H, Cho I S, Im W T, Moon Y, Hwang S M, Hong S K, Lee S W 2011 J. Appl. Phys. 109 43103
[11] Lazić S, Moreno M, Calleja J M, Trampert A, Ploog K H, Naranjo F B, Fernandez S, Calleja E 2005 Appl. Phys. Lett. 86 61905
[12] Irmer G, Brumme T, Herms M, Wernicke T, Kneissl M, Weyers M 2008 J. Mater. Sci.: Mater. Electron. 19 51
[13] Yan Q, Rinke P, Scheffler M, van de Walle G 2009 Appl. Phys. Lett. 95 2009
[14] Correia M R, Pereira S, Pereira E, Frandon J, Alves E 2003 Appl. Phys. Lett. 83 4761
[15] Giehler M, Ramsteiner M, Waltereit P, Brandt O Plooga K H, Oblohb H 2002 Physica B: Condens Matter 316-317 162
[16] Gmez-Gmez M I, Garca A, de Lima M M, Daudin B, Rizzi A, Denker C, Malindretos J 2011 Ann. Phys. 523 51
[17] James P, Bernard B 2010 Solid-State Physics: Introduction to the Theory (Berlin Heidelberg:Springer-Verlag) p101
[18] Sadao A 2005 Properties of Group-IV, III-V and II-VI Semiconductors (New York: John Wiley Sons Ltd) p83
[19] Song S H, Jiles D C, Snyde J E, et al. 2005 J. Appl.Phys. 97 10M516
[20] Gorczyca I, Christensen N E, Peltzer E L, Rodriguez C O 1995 Phys. Rev. B 51 11936
[21] Li W S, Shen Z X, Feng Z C, Chua S J 2000 J. Appl. Phys. 87 3332
Catalog
Metrics
- Abstract views: 5739
- PDF Downloads: 208
- Cited By: 0