搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响

时强 李路平 张勇辉 张紫辉 毕文刚

引用本文:
Citation:

GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响

时强, 李路平, 张勇辉, 张紫辉, 毕文刚

Identifying the influence of GaN/InxGa1-xN type last quantum barrier on internal quantum efficiency for III-nitride based light-emitting diode

Shi Qiang, Li Lu-Ping, Zhang Yong-Hui, Zhang Zi-Hui, Bi Wen-Gang
PDF
导出引用
  • GaN/InxGa1-xN型最后一个量子势垒结构能有效提高发光二极管(LED)器件内量子效率,缓解LED效率随输入电流增大而衰减的问题.本文综述了该结构及其结构变化In组分梯度递增以及渐变、GaN/InxGa1-xN界面极化率改变等对改善LED器件性能的影响及优势,归纳总结了不同结构的GaN/InxGa1-xN型最后一个量子垒的工作机理,阐明极化反转是该结构提高LED性能的根本原因.在综述该结构发展的基础之上,通过APSYS仿真计算,进一步探索和深入分析了该结构中InxGa1-xN层的In组分及其厚度变化对LED内量子效率的影响.结果表明:In组分的增加有助于在GaN/InxGa1-xN界面产生更多的极化负电荷,增加GaN以及电子阻挡层处导带势垒高度,减少电子泄漏,从而提高LED的内量子效率;但GaN/InxGa1-xN型最后一个量子势垒中InxGa1-xN及GaN层厚度的变化由于会同时引起势垒高度和隧穿效应的改变,因而InxGa1-xN和GaN层的厚度存在一个最佳比值以实现最大化的减小漏电子,提高内量子效率.
    GaN/InxGa1-xN-type last quantum barrier (LQB) proves to be useful for Ⅲ-nitride based light-emitting diode (LED) in enhancing the internal quantum efficiency (IQE) and suppressing the efficiency droop level that often takes place especially when the injection current is high. In this work, GaN/InxGa1-xN-type LQB reported by the scientific community to enhance the IQE is first reviewed and summarized. Then, the influences of indium composition and thickness of the InxGa1-xN layer on the performance of LED incorporated with the GaN/InxGa1-xN-type LQB are studied. Through analyzing energy band diagrams calculated with APSYS, we find that the[0001] oriented LQB features an electron depletion due to the polarization induced negative charges at the GaN/InxGa1-xN interface. The electron depletion enhances the electron blocking effect and reduces the electron accumulation at the InxGa1-xN/AlGaN interface, leading to an improved IQE for the LED. In addition, increasing the indium composition of the InxGa1-xN layer will generate more negative interface charges, which result in further increased conduction band barrier height for the electrons and reduced electron leakage. On the other hand, for the GaN/InxGa1-xN-type LQB with a fixed indium composition, there exists an optimum thickness for the InxGa1-xN layer in maximizing the improvement of IQE for the LED, mainly because the interaction between two mechanisms co-exists when varying the thickness of the InxGa1-xN layer, i.e., the initial increase in the InxGa1-xN layer thickness will lead to an increased conduction band barrier height, which prevents electrons from leaking into the InxGa1-xN layer. However, further increasing the InxGa1-xN layer thickness to a certain value, tunneling effect will kick in as a result of the simultaneously reduced GaN thickness-the electrons will tunnel through the thin GaN layer in the LQB from the quantum wells to the InxGa1-xN layer. This will cause electrons to increase in the InxGa1-xN layer. Therefore, as a result of the interaction between the above-mentioned two mechanisms, there is an optimum thickness for the InxGa1-xN layer such that the electrons in the InxGa1-xN layer will reach a minimal value, which in turn will lead to a maximized conduction band barrier height for the AlGaN electron blocking layer and facilitate the performance of LEDs.
      通信作者: 张勇辉, zhangyh@hebut.edu.cn;wbi@hebut.edu.cn ; 毕文刚, zhangyh@hebut.edu.cn;wbi@hebut.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFB0400800,2016YFB0400801)、国家自然科学基金(批准号:61604051,51502074)、天津市自然科学基金(批准号:16JCQNJC01000,16JCYBJC16200)和人社部留学人员科技活动项目择优资助项目(批准号:CG2016008001)资助的课题.
      Corresponding author: Zhang Yong-Hui, zhangyh@hebut.edu.cn;wbi@hebut.edu.cn ; Bi Wen-Gang, zhangyh@hebut.edu.cn;wbi@hebut.edu.cn
    • Funds: Project supported by the National Key RD Program of China (Grant Nos.2016YFB0400800,2016YFB0400801),the National Natural Science Foundation of China (Grant Nos.61604051,51502074),the Natural Science Foundation of Tianjin City,China (Grant Nos.16JCQNJC01000,16JCYBJC16200),and the Technology Foundation for Selected Overseas Chinese Scholar by Ministry of Human Resources and Social Security of the People's Republic of China (Grant No.CG2016008001).
    [1]

    Chen W C, Tang H L, Luo P, Ma W W, Xu X D, Qian X B, Jiang D P, Wu F, Wang J Y, Xu J 2014 Acta Phys. Sin. 63 068103 (in Chinese) [陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军 2014 63 068103]

    [2]

    Tan S T, Sun X W, Demir H V, Denbaars S P 2012 IEEE Photon. J. 4 613

    [3]

    Tansu N, Zhao H, Liu G, Li X H, Zhang J, Tong H, Ee Y K 2010 IEEE Photon. J. 2 241

    [4]

    Pimputkar S, Speck J S, Denbaars S P, Nakamura S 2009 Nat. Photon. 3 180

    [5]

    Khan A, Balakrishnan K, Katona T 2008 Nat. Photon. 2 77

    [6]

    Verzellesi G, Saguatti D, Meneghini M, Bertazzi F, Goano M, Meneghesso G, Zanoni E 2013 J. Appl. Phys. 114 071101

    [7]

    Iveland J, Martinelli L, Peretti J, Speck J S, Weisbuch C 2013 Phys. Rev. Lett. 110 177406

    [8]

    Zhang Z H, Ju Z, Liu W, Tan S T, Ji Y, Kyaw Z, Zhang X, Hasanov N, Sun X W, Demir H V 2014 Opt. Lett. 39 2483

    [9]

    Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J, Park Y 2007 Appl. Phys. Lett. 91 183507

    [10]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Kyaw Z, Zhang X, Wang L, Sun X W, Demir H V 2014 Appl. Phys. Lett. 105 033506

    [11]

    Zhang Z H, Zhang Y, Bi W, Geng C, Xu S, Demir H V, Sun X W 2016 Appl. Phys. Lett. 108 133502

    [12]

    Zhang Z H, Liu W, Tan S T, Ji Y, Wang L, Zhu B, Zhang Y, Lu S, Zhang X, Hasanov N, Sun X W, Demir H V 2014 Appl. Phys. Lett. 105 153503

    [13]

    Han S H, Lee D Y, Lee S J, Cho C Y, Kwon M K, Lee S P, Noh D Y, Kim D J, Kim Y C, Park S J 2009 Appl. Phys. Lett. 94 231123

    [14]

    Meyaard D S, Lin G B, Ma M, Cho J, Schubert E F, Han S H, Kim M H, Shim H, Kim Y S 2013 Appl. Phys. Lett. 103 201112

    [15]

    Cheng L, Wu S, Xia C, Chen H 2015 J. Appl. Phys. 118 103103

    [16]

    Kuo Y K, Shih Y H, Tsai M C, Chang J Y 2011 IEEE Photon. Tech. L. 23 1630

    [17]

    Lu T, Li S, Liu C, Zhang K, Xu Y, Tong J, Wu L, Wang H, Yang X, Yin Y, Xiao G, Zhou Y 2012 Appl. Phys. Lett. 100 141106

    [18]

    Lu T, Ma Z, Du C, Fang Y, Chen F, Jiang Y, Wang L, Jia H, Chen H 2014 Appl. Phys. A 114 1055

    [19]

    Lin R M, Yu S F, Chang S J, Chiang T H, Chang S P, Chen C H 2012 Appl. Phys. Lett. 101 081120

    [20]

    Liu Z, Ma J, Yi X, Guo E, Wang L, Wang J, Lu N, Li J, Ferguson I, Melton A 2012 Appl. Phys. Lett. 101 261106

    [21]

    Kyaw Z, Zhang Z H, Liu W, Tan S T, Ju Z G, Zhang X L, Ji Y, Hasanov N, Zhu B, Lu S, Zhang Y, Teng J H, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 161113

    [22]

    Zhang Z H, Zhang Y, Li H, Xu S, Geng C, Bi W 2016 IEEE Photon. J. 8 8200307

    [23]

    Kirste L, Khler K, Maier M, Kunzer M, Maier M, Wagner J 2008 J. Mater. Sci.-Mater. Electron. 19 S176

    [24]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Kyaw Z, Zhang X, Wang L, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 243501

    [25]

    Lin G B, Meyaard D, Cho J, Schubert E F, Shim H, Sone C 2012 Appl. Phys. Lett. 100 161106

    [26]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Zhang X, Wang L, Kyaw Z, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 251108

    [27]

    Zhang Z H, Tan S T, Kyaw Z, Ji Y, Liu W, Ju Z, Hasanov N, Sun X W, Demir H V 2013 Appl. Phys. Lett. 102 193508

    [28]

    Zhang L, Ding K, Liu N X, Wei T B, Ji X L, Ma P, Yan J C, Wang J X, Zeng Y P, Li J M 2011 Appl. Phys. Lett. 98 101110

    [29]

    Laubsch A, Sabathil M, Bergbauer W, Strassburg M, Lugauer H, Peter M, Lutgen S, Linder N, Streubel K, Hader J, Moloney J V, Pasenow B, Koch S W 2009 Phys. Status Solidi C 6 S913

    [30]

    Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675

  • [1]

    Chen W C, Tang H L, Luo P, Ma W W, Xu X D, Qian X B, Jiang D P, Wu F, Wang J Y, Xu J 2014 Acta Phys. Sin. 63 068103 (in Chinese) [陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军 2014 63 068103]

    [2]

    Tan S T, Sun X W, Demir H V, Denbaars S P 2012 IEEE Photon. J. 4 613

    [3]

    Tansu N, Zhao H, Liu G, Li X H, Zhang J, Tong H, Ee Y K 2010 IEEE Photon. J. 2 241

    [4]

    Pimputkar S, Speck J S, Denbaars S P, Nakamura S 2009 Nat. Photon. 3 180

    [5]

    Khan A, Balakrishnan K, Katona T 2008 Nat. Photon. 2 77

    [6]

    Verzellesi G, Saguatti D, Meneghini M, Bertazzi F, Goano M, Meneghesso G, Zanoni E 2013 J. Appl. Phys. 114 071101

    [7]

    Iveland J, Martinelli L, Peretti J, Speck J S, Weisbuch C 2013 Phys. Rev. Lett. 110 177406

    [8]

    Zhang Z H, Ju Z, Liu W, Tan S T, Ji Y, Kyaw Z, Zhang X, Hasanov N, Sun X W, Demir H V 2014 Opt. Lett. 39 2483

    [9]

    Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J, Park Y 2007 Appl. Phys. Lett. 91 183507

    [10]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Kyaw Z, Zhang X, Wang L, Sun X W, Demir H V 2014 Appl. Phys. Lett. 105 033506

    [11]

    Zhang Z H, Zhang Y, Bi W, Geng C, Xu S, Demir H V, Sun X W 2016 Appl. Phys. Lett. 108 133502

    [12]

    Zhang Z H, Liu W, Tan S T, Ji Y, Wang L, Zhu B, Zhang Y, Lu S, Zhang X, Hasanov N, Sun X W, Demir H V 2014 Appl. Phys. Lett. 105 153503

    [13]

    Han S H, Lee D Y, Lee S J, Cho C Y, Kwon M K, Lee S P, Noh D Y, Kim D J, Kim Y C, Park S J 2009 Appl. Phys. Lett. 94 231123

    [14]

    Meyaard D S, Lin G B, Ma M, Cho J, Schubert E F, Han S H, Kim M H, Shim H, Kim Y S 2013 Appl. Phys. Lett. 103 201112

    [15]

    Cheng L, Wu S, Xia C, Chen H 2015 J. Appl. Phys. 118 103103

    [16]

    Kuo Y K, Shih Y H, Tsai M C, Chang J Y 2011 IEEE Photon. Tech. L. 23 1630

    [17]

    Lu T, Li S, Liu C, Zhang K, Xu Y, Tong J, Wu L, Wang H, Yang X, Yin Y, Xiao G, Zhou Y 2012 Appl. Phys. Lett. 100 141106

    [18]

    Lu T, Ma Z, Du C, Fang Y, Chen F, Jiang Y, Wang L, Jia H, Chen H 2014 Appl. Phys. A 114 1055

    [19]

    Lin R M, Yu S F, Chang S J, Chiang T H, Chang S P, Chen C H 2012 Appl. Phys. Lett. 101 081120

    [20]

    Liu Z, Ma J, Yi X, Guo E, Wang L, Wang J, Lu N, Li J, Ferguson I, Melton A 2012 Appl. Phys. Lett. 101 261106

    [21]

    Kyaw Z, Zhang Z H, Liu W, Tan S T, Ju Z G, Zhang X L, Ji Y, Hasanov N, Zhu B, Lu S, Zhang Y, Teng J H, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 161113

    [22]

    Zhang Z H, Zhang Y, Li H, Xu S, Geng C, Bi W 2016 IEEE Photon. J. 8 8200307

    [23]

    Kirste L, Khler K, Maier M, Kunzer M, Maier M, Wagner J 2008 J. Mater. Sci.-Mater. Electron. 19 S176

    [24]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Kyaw Z, Zhang X, Wang L, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 243501

    [25]

    Lin G B, Meyaard D, Cho J, Schubert E F, Shim H, Sone C 2012 Appl. Phys. Lett. 100 161106

    [26]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Zhang X, Wang L, Kyaw Z, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 251108

    [27]

    Zhang Z H, Tan S T, Kyaw Z, Ji Y, Liu W, Ju Z, Hasanov N, Sun X W, Demir H V 2013 Appl. Phys. Lett. 102 193508

    [28]

    Zhang L, Ding K, Liu N X, Wei T B, Ji X L, Ma P, Yan J C, Wang J X, Zeng Y P, Li J M 2011 Appl. Phys. Lett. 98 101110

    [29]

    Laubsch A, Sabathil M, Bergbauer W, Strassburg M, Lugauer H, Peter M, Lutgen S, Linder N, Streubel K, Hader J, Moloney J V, Pasenow B, Koch S W 2009 Phys. Status Solidi C 6 S913

    [30]

    Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675

  • [1] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响.  , 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [2] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征.  , 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [3] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究.  , 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [4] 王雪松, 冀子武, 王绘凝, 徐明升, 徐现刚, 吕元杰, 冯志红. 关于InGaN/GaN多量子阱结构内量子效率的研究.  , 2014, 63(12): 127801. doi: 10.7498/aps.63.127801
    [5] 刘战辉, 张李骊, 李庆芳, 张荣, 修向前, 谢自力, 单云. Si(110)和Si(111)衬底上制备InGaN/GaN蓝光发光二极管.  , 2014, 63(20): 207304. doi: 10.7498/aps.63.207304
    [6] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究.  , 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [7] 岳庆炀, 孔凡敏, 李康, 赵佳. 基于缺陷光子晶体结构的GaN基发光二极管光提取效率的有关研究.  , 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [8] 陈峻, 范广涵, 张运炎. 渐变型量子阱垒层厚度对GaN基双波长发光二极管发光特性调控的研究.  , 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [9] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法.  , 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [10] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究.  , 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [11] 朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林. In组分渐变提高InGaN/GaN多量子阱发光二极管发光性能.  , 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [12] 李为军, 张波, 徐文兰, 陆卫. InGaN/GaN多量子阱蓝色发光二极管的实验与模拟分析.  , 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [13] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究.  , 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [14] 李炳乾, 刘玉华, 冯玉春. 大功率GaN基发光二极管等效串联电阻的功率耗散及其对发光效率的影响.  , 2008, 57(1): 477-481. doi: 10.7498/aps.57.477
    [15] 熊传兵, 江风益, 王 立, 方文卿, 莫春兰. 硅衬底垂直结构InGaAlN多量子阱发光二极管电致发光谱的干涉现象研究.  , 2008, 57(12): 7860-7864. doi: 10.7498/aps.57.7860
    [16] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究.  , 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [17] 丁志博, 王 琦, 王 坤, 王 欢, 陈田祥, 张国义, 姚淑德. InGaN/GaN多量子阱的组分确定和晶格常数计算.  , 2007, 56(5): 2873-2877. doi: 10.7498/aps.56.2873
    [18] 邢艳辉, 韩 军, 刘建平, 邓 军, 牛南辉, 沈光地. 垒掺In提高InGaN/GaN多量子阱发光特性.  , 2007, 56(12): 7295-7299. doi: 10.7498/aps.56.7295
    [19] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究.  , 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [20] 徐耿钊, 梁 琥, 白永强, 刘纪美, 朱 星. 低温近场光学显微术对InGaN/GaN多量子阱电致发光温度特性的研究.  , 2005, 54(11): 5344-5349. doi: 10.7498/aps.54.5344
计量
  • 文章访问数:  6225
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-04
  • 修回日期:  2017-05-23
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map