-
A simulation study is performed on the effects of six different cooling rates on microstructural evolution during solidification process of liquid Ca50Zn50 alloy with larger atomic size difference by using the molecular dynamics method. The pair distribution function, Honeycutt-Andersen (HA) bond-type index method, cluster-type index method (CTIM-2) and three-dimensional visualization method are adopted to deeply analyze the microstructural evolution. The results show that there is a critical cooling rate (in a range of 11012 and 51011 K/s) for forming amorphous or crystal structure. When the cooling rate, such as 11014 K/s, 11013 K/s, 11012 K/s and 51011 K/s, is above the critical cooling rate, the amorphous structures are formed mainly to be the 1551, 1541 and 1431 bond-types or the icosahedron basic clustr (12 0 12 0 0 0); while the cooling rate is under the critical cooling rate, such as at 11012 K/s, the partial crystal structures are formed mainly to be the 1441 and 1661 bond-types or the bcc clusters (14 6 0 8 0 0) (containing part of hcp (12 0 0 0 6 6) and fcc (12 0 0 0 12 0) basic crystal clusters) in the system. In the cooling rate range of forming amorphous structure, the first peak of the pair distribution function g(r) is split obviously into three secondary peaks corresponding to the nearest neighbor as Zn-Zn, Ca-Zn and Ca-Ca, respectively, and with the decrease of cooling rate, the secondary peak formed by the like atoms is inereased and the secondary peak formed by unlike atoms is reduced. With the decrease of cooling rate, the Zn atoms can be easily segregated to form the larger clusters; the lower the cooling rate, the bigger the number of basic icosahedrons formed in the system, and the amorphous system is more stable. In the cooling rate range of forming crystal structure, a great number of Zn atoms are segregated to form the bulk bcc crystal structures and part of Ca atoms are segregated to form some hcp and fcc crystal clusters.
-
Keywords:
- liquid Ca-Zn alloy /
- cooling rate /
- microstructural evolution /
- molocular dymanics simulation
[1] Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45
[2] Texler M M, hadhani N N 2010 Prog. Mater. Sci. 55 759
[3] Basu J, Ranganathan S 2003 Sadhana 28 783
[4] Hirata A, Guan P f, FujitaT, Hirotsu Y, Inoue A, Yavari A R, Chen M W 2011 Nat. Mater. 10 28
[5] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419
[6] Cheng Y Q Ma E Sheng HW 2009 Phys. Rev. Lett. 102 245501
[7] Liu C S, Xia J C, Zhu Z G, Sun D Y 2001 J. Chem. Phys. 114 7506
[8] Tian Z A, Liu R S, Zheng C X, Liu H R, Hou Z Y, Peng P J 2008 Phys. Chem. A 112 12326
[9] Hou Z Y, Liu R S, Li C S, Zhou Q Y, Zheng C X 2005 Acta Phys. Sin. 54 7523 (in Chinese) [侯兆阳, 刘让苏, 李琛珊, 周群益, 郑采星 2005 54 7523]
[10] LinY, Liu R S, Tian Z A, Hou Z Y, Zhou L L, Yu Y B 2008 Acta Phys.-Chim. Sin. 24 250 (in Chinese) [林 艳, 刘让苏, 田泽安, 侯兆阳, 周丽丽, 余亚斌 2008 物理化学学报 24 250]
[11] Pei Q X, Lu C, Fu M W 2004 J. Phys.: Condens. Matter 16 4203
[12] Wang L, Bian X F, Li H 2001 Mater. Lett. 51 7
[13] Kazanc S 2006 Comput. Mater. Sci. 38 405
[14] Hao S G, Kramer M J, Wang C Z, Ho K M, Nandi S, Kreyssig A, Goldman A I 2009 Phys. Rev. B 79 104206
[15] Liu X J, Chen G L, Hui X, Lu Z P 2008 Appl. Phys. Lett. 93 011911
[16] Wang S, Lai S K 1980 J. Phys. F: Met. Phys. 10 2717
[17] Li D H, Li X R, Wang S 1986 J. Phys. F: Met. Phys. 16 309
[18] Hafner J, Tegze M 1989 J. Phys.: Condens. Matter 1 8277
[19] Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511
[20] Dai X D, Li J H, Guo H B, Liu B X 2007 J. Appl. Phys. 101 063512
[21] Honeycutt J D, Andemen H C 1987 J. Phys. Chem. 91 4950
[22] Liu R S, Liu H R, Dong K J, Hou Z Y, Tian Z A, Peng P, Yu A B 2009 J. Non-Cryst. Solids. 355 541
[23] Fang H Z, Hui X, Chen G L, Liu Z K 2008 Phys. Lett. A 372 5831
[24] Gao T H, Liu R S, Zhou LL, Tian Z A, Xie Q 2009 Acta Phys. Chim. Sin. 25(10) 2093 (in Chinese) [高廷红, 刘让苏, 周丽丽, 田泽安, 谢泉 2009 物理化学学报 25(10) 2093]
[25] Qi D W, Wang S 1991 Phys. Rev. B 44 884
[26] Liu R S, Dong K J, Liu F X, Zheng C X, Liu H R, Li J Y 2004 Sci. China Ser. G 34 549 (in Chinese) [刘让苏, 董科军, 刘凤翔, 郑采星, 刘海蓉, 李基永 2004 中国科学G辑 34 549]
[27] Liu R S, Dong K J, Tian Z A, Liu H R, Peng P, Yu A B 2007 J. Phys.: Condens. Matter. 19 196103
[28] Liu H R, Liu R S, Zhang A L, Hou Z Y, Wang X, Tian Z A 2007 Chin. Phys. 16 3743
[29] Peng P, Li G F, Zheng C X, Han S C, Liu R S 2006 Sci. China Ser. E 36 975 (in Chinese) [彭平, 李贵发, 郑采星, 韩绍昌, 刘让苏 2006 中国科学E辑 36 975]
[30] Zheng C X, Liu R S, Dong K J, Lu X Y, Peng P, Liu H R, Xu Z Y, Xie Q 2002 J. Atom. Mol. Phys. 19 59 (in Chinese) [郑采星, 刘让苏, 董科军, 卢小勇, 彭平, 刘海蓉, 徐仲榆, 谢泉 2002 原子与分子 19 59]
[31] Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503
[32] Liu Z Y 1984 Acta Metall. Sin. 20(1) B9 (in Chinese) [刘志毅 1984 金属学报 20(1) B9]
-
[1] Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45
[2] Texler M M, hadhani N N 2010 Prog. Mater. Sci. 55 759
[3] Basu J, Ranganathan S 2003 Sadhana 28 783
[4] Hirata A, Guan P f, FujitaT, Hirotsu Y, Inoue A, Yavari A R, Chen M W 2011 Nat. Mater. 10 28
[5] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419
[6] Cheng Y Q Ma E Sheng HW 2009 Phys. Rev. Lett. 102 245501
[7] Liu C S, Xia J C, Zhu Z G, Sun D Y 2001 J. Chem. Phys. 114 7506
[8] Tian Z A, Liu R S, Zheng C X, Liu H R, Hou Z Y, Peng P J 2008 Phys. Chem. A 112 12326
[9] Hou Z Y, Liu R S, Li C S, Zhou Q Y, Zheng C X 2005 Acta Phys. Sin. 54 7523 (in Chinese) [侯兆阳, 刘让苏, 李琛珊, 周群益, 郑采星 2005 54 7523]
[10] LinY, Liu R S, Tian Z A, Hou Z Y, Zhou L L, Yu Y B 2008 Acta Phys.-Chim. Sin. 24 250 (in Chinese) [林 艳, 刘让苏, 田泽安, 侯兆阳, 周丽丽, 余亚斌 2008 物理化学学报 24 250]
[11] Pei Q X, Lu C, Fu M W 2004 J. Phys.: Condens. Matter 16 4203
[12] Wang L, Bian X F, Li H 2001 Mater. Lett. 51 7
[13] Kazanc S 2006 Comput. Mater. Sci. 38 405
[14] Hao S G, Kramer M J, Wang C Z, Ho K M, Nandi S, Kreyssig A, Goldman A I 2009 Phys. Rev. B 79 104206
[15] Liu X J, Chen G L, Hui X, Lu Z P 2008 Appl. Phys. Lett. 93 011911
[16] Wang S, Lai S K 1980 J. Phys. F: Met. Phys. 10 2717
[17] Li D H, Li X R, Wang S 1986 J. Phys. F: Met. Phys. 16 309
[18] Hafner J, Tegze M 1989 J. Phys.: Condens. Matter 1 8277
[19] Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511
[20] Dai X D, Li J H, Guo H B, Liu B X 2007 J. Appl. Phys. 101 063512
[21] Honeycutt J D, Andemen H C 1987 J. Phys. Chem. 91 4950
[22] Liu R S, Liu H R, Dong K J, Hou Z Y, Tian Z A, Peng P, Yu A B 2009 J. Non-Cryst. Solids. 355 541
[23] Fang H Z, Hui X, Chen G L, Liu Z K 2008 Phys. Lett. A 372 5831
[24] Gao T H, Liu R S, Zhou LL, Tian Z A, Xie Q 2009 Acta Phys. Chim. Sin. 25(10) 2093 (in Chinese) [高廷红, 刘让苏, 周丽丽, 田泽安, 谢泉 2009 物理化学学报 25(10) 2093]
[25] Qi D W, Wang S 1991 Phys. Rev. B 44 884
[26] Liu R S, Dong K J, Liu F X, Zheng C X, Liu H R, Li J Y 2004 Sci. China Ser. G 34 549 (in Chinese) [刘让苏, 董科军, 刘凤翔, 郑采星, 刘海蓉, 李基永 2004 中国科学G辑 34 549]
[27] Liu R S, Dong K J, Tian Z A, Liu H R, Peng P, Yu A B 2007 J. Phys.: Condens. Matter. 19 196103
[28] Liu H R, Liu R S, Zhang A L, Hou Z Y, Wang X, Tian Z A 2007 Chin. Phys. 16 3743
[29] Peng P, Li G F, Zheng C X, Han S C, Liu R S 2006 Sci. China Ser. E 36 975 (in Chinese) [彭平, 李贵发, 郑采星, 韩绍昌, 刘让苏 2006 中国科学E辑 36 975]
[30] Zheng C X, Liu R S, Dong K J, Lu X Y, Peng P, Liu H R, Xu Z Y, Xie Q 2002 J. Atom. Mol. Phys. 19 59 (in Chinese) [郑采星, 刘让苏, 董科军, 卢小勇, 彭平, 刘海蓉, 徐仲榆, 谢泉 2002 原子与分子 19 59]
[31] Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503
[32] Liu Z Y 1984 Acta Metall. Sin. 20(1) B9 (in Chinese) [刘志毅 1984 金属学报 20(1) B9]
Catalog
Metrics
- Abstract views: 6885
- PDF Downloads: 470
- Cited By: 0